Organocerium chemistry

Last updated
structure of
.mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block;text-align:left}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}
(C5(CH3)4H)3Ce. Color code: green = Ce, gray = C, white = H. CSD CIF DEWDEP.png
structure of (C5(CH3)4H)3Ce. Color code: green = Ce, gray = C, white = H.

Organocerium chemistry is the science of organometallic compounds that contain one or more chemical bond between carbon and cerium. These compounds comprise a subset of the organolanthanides. Most organocerium compounds feature Ce(III) but some Ce(IV) derivatives are known.

Contents

Alkyl derivatives

structure of
Ce(CH3)6[Li(tmeda)]3, where tmeda is
(CH3)2NCH2CH2N(CH3)2 CeMe6Li3(tmeda)3.svg
structure of Ce(CH3)6[Li(tmeda)]3, where tmeda is (CH3)2NCH2CH2N(CH3)2

Simple alkylcerium reagents are well known. One example is [Li(tmeda)]3Ce(CH3)6. [1]

Although they are described as RCeCl2, their structures are far more complex.. [2] Furthermore, the solvent seems to alter the solution structure of the complex, with differences noted between reagents prepared in diethyl ether and tetrahydrofuran. There is evidence that the parent chloride forms a polymeric species in THF solution, of the form [Ce(μ-Cl)2(H2O)(THF)2]n, but whether this type of polymer exists once the organometallic reagent is formed is unknown. [3]

Cyclopentadienyl derivatives

Cyclopentadienyl derivatives of Ce are particularly well characterized. Hundreds have been examined by X-ray crystallography. The depicted (C5(CH3)4H)3Ce is one of many. [4]

Some of the best characterized organocerium(IV) compounds feature cyclopentadienyl ligands, e.g. Ce(C5H5)3Cl [5]

Applications to organic synthesis

As reagents in organic chemistry, organocerium compounds are typically prepared in situ by treatment of cerium trichloride with organolithium or Grignard reagent. Reagents are derived from alkyl, alkynyl, and alkenyl organometallic reagents as well as enolates have been described. [6] [2] [7] [3] [8] The most common cerium source for this purpose is cerium(III) chloride, [9] which can be obtained in anhydrous form via dehydration of the commercially available heptahydrate. Precomplexation with tetrahydrofuran is important for the success of the transmetallation, with most procedures involving "vigorous stirring for a period of no less than 2 hours". [2] The structures depicted (as below) for organocerium reagent, however are highly simplified.

Examples of various organocerium reagents previously reported. CeriumReagents.png
Examples of various organocerium reagents previously reported.

These reagents add 1,2 to conjugated ketones and aldehydes. [10] This preference for direct addition is attributed to the oxophilicity of the cerium reagent, which activates the carbonyl for nucleophilic attack. [11]

Reactions

Organocerium reagents are used almost exclusively for addition reactions in the same vein as organolithium and Grignard reagents.They are highly nucleophilic, allowing additions to imines [12] in the absence of additional Lewis acid catalysts, making them useful for substrates in which typical conditions fail. [2]

Nucleophilicity of organocerium reagents Cerium nucleophilic.png
Nucleophilicity of organocerium reagents

Despite this high reactivity, organocerium reagents are almost entirely non-basic, tolerating the presence of free alcohols and amines as well as enolizable α-protons. [2] [7]

Non-basic tendencies in organocerium reagents Cerium nonbasic.png
Non-basic tendencies in organocerium reagents

They undergo 1,2-addition in reactions with conjugated electrophiles. At the same time, organocerium reagents can be used to synthesize ketones from acyl compounds without over-addition, as seen with organocuprates. [2]

Reactivity and selectivity of organocerium compounds Cerium reactivity.png
Reactivity and selectivity of organocerium compounds

Organocerium reagents have been employed in a number of total syntheses. Shown below is a key coupling step in the total synthesis of roseophilin, a potent antitumor antibiotic. [3]

Total synthesis of roseophilin using an organocerium reagent Ceriumroseophilin.png
Total synthesis of roseophilin using an organocerium reagent

See also

Related Research Articles

<span class="mw-page-title-main">Grignard reaction</span> Organometallic coupling reaction

The Grignard reaction is an organometallic chemical reaction in which, according to the classical definition, carbon alkyl, allyl, vinyl, or aryl magnesium halides are added to the carbonyl groups of either an aldehyde or ketone under anhydrous conditions. This reaction is important for the formation of carbon–carbon bonds.

<span class="mw-page-title-main">Gilman reagent</span> Class of chemical compounds

A Gilman reagent is a diorganocopper compound with the formula Li[CuR2], where R is an alkyl or aryl. They are colorless solids.

<span class="mw-page-title-main">Organolithium reagent</span> Chemical compounds containing C–Li bonds

In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom to the substrates in synthetic steps, through nucleophilic addition or simple deprotonation. Organolithium reagents are used in industry as an initiator for anionic polymerization, which leads to the production of various elastomers. They have also been applied in asymmetric synthesis in the pharmaceutical industry. Due to the large difference in electronegativity between the carbon atom and the lithium atom, the C−Li bond is highly ionic. Owing to the polar nature of the C−Li bond, organolithium reagents are good nucleophiles and strong bases. For laboratory organic synthesis, many organolithium reagents are commercially available in solution form. These reagents are highly reactive, and are sometimes pyrophoric.

<span class="mw-page-title-main">Cerium(III) chloride</span> Chemical compound

Cerium(III) chloride (CeCl3), also known as cerous chloride or cerium trichloride, is a compound of cerium and chlorine. It is a white hygroscopic salt; it rapidly absorbs water on exposure to moist air to form a hydrate, which appears to be of variable composition, though the heptahydrate CeCl3·7H2O is known. It is highly soluble in water, and (when anhydrous) it is soluble in ethanol and acetone.

Metalation is a chemical reaction that forms a bond to a metal. This reaction usually refers to the replacement of a halogen atom in an organic molecule with a metal atom, resulting in an organometallic compound. In the laboratory, metalation is commonly used to activate organic molecules during the formation of C—X bonds, which are necessary for the synthesis of many organic molecules.

<span class="mw-page-title-main">Barbier reaction</span> Reaction in organic chemistry

The Barbier reaction is an organometallic reaction between an alkyl halide, a carbonyl group and a metal. The reaction can be performed using magnesium, aluminium, zinc, indium, tin, samarium, barium or their salts. The reaction product is a primary, secondary or tertiary alcohol. The reaction is similar to the Grignard reaction but the crucial difference is that the organometallic species in the Barbier reaction is generated in situ, whereas a Grignard reagent is prepared separately before addition of the carbonyl compound. Unlike many Grignard reagents, the organometallic species generated in a Barbier reaction are unstable and thus cannot be stored or sold commercially. Barbier reactions are nucleophilic addition reactions that involve relatively inexpensive, water insensitive metals or metal compounds. For this reason, it is possible in many cases to run the reaction in water, making the procedure part of green chemistry. In contrast, Grignard reagents and organolithium reagents are highly moisture sensitive and must be used under an inert atmosphere without the presence of water. The Barbier reaction is named after Philippe Barbier, who was Victor Grignard's teacher.

The Reformatsky reaction is an organic reaction which condenses aldehydes or ketones with α-halo esters using metallic zinc to form β-hydroxy-esters:

The Weinreb ketone synthesis or Weinreb–Nahm ketone synthesis is a chemical reaction used in organic chemistry to make carbon–carbon bonds. It was discovered in 1981 by Steven M. Weinreb and Steven Nahm as a method to synthesize ketones. The original reaction involved two subsequent nucleophilic acyl substitutions: the conversion of an acid chloride with N,O-Dimethylhydroxylamine, to form a Weinreb–Nahm amide, and subsequent treatment of this species with an organometallic reagent such as a Grignard reagent or organolithium reagent. Nahm and Weinreb also reported the synthesis of aldehydes by reduction of the amide with an excess of lithium aluminum hydride.

<span class="mw-page-title-main">Grignard reagent</span> Organometallic compounds used in organic synthesis

Grignard reagents or Grignard compounds are chemical compounds with the general formula R−Mg−X, where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride Cl−Mg−CH3 and phenylmagnesium bromide (C6H5)−Mg−Br. They are a subclass of the organomagnesium compounds.

<span class="mw-page-title-main">Methyllithium</span> Chemical compound

Methyllithium is the simplest organolithium reagent, with the empirical formula CH3Li. This s-block organometallic compound adopts an oligomeric structure both in solution and in the solid state. This highly reactive compound, invariably used in solution with an ether as the solvent, is a reagent in organic synthesis as well as organometallic chemistry. Operations involving methyllithium require anhydrous conditions, because the compound is highly reactive towards water. Oxygen and carbon dioxide are also incompatible with MeLi. Methyllithium is usually not prepared, but purchased as a solution in various ethers.

<span class="mw-page-title-main">Organocopper chemistry</span> Compound with carbon to copper bonds

Organocopper chemistry is the study of the physical properties, reactions, and synthesis of organocopper compounds, which are organometallic compounds containing a carbon to copper chemical bond. They are reagents in organic chemistry.

The Kulinkovich reaction describes the organic synthesis of substituted cyclopropanols through reaction of esters with dialkyl­dialkoxy­titanium reagents, which are generated in situ from Grignard reagents containing a hydrogen in beta-position and titanium(IV) alkoxides such as titanium isopropoxide. This reaction was first reported by Oleg Kulinkovich and coworkers in 1989.

<span class="mw-page-title-main">Group 2 organometallic chemistry</span>

Group 2 organometallic chemistry refers to the chemistry of compounds containing carbon bonded to any group 2 element. By far the most common group 2 organometallic compounds are the magnesium-containing Grignard reagents which are widely used in organic chemistry. Other organometallic group 2 compounds are rare and are typically limited to academic interests.

Organomanganese chemistry is the chemistry of organometallic compounds containing a carbon to manganese chemical bond. In a 2009 review, Cahiez et al. argued that as manganese is cheap and benign, organomanganese compounds have potential as chemical reagents, although currently they are not widely used as such despite extensive research.

Electrophilic amination is a chemical process involving the formation of a carbon–nitrogen bond through the reaction of a nucleophilic carbanion with an electrophilic source of nitrogen.

Reactions of organocopper reagents involve species containing copper-carbon bonds acting as nucleophiles in the presence of organic electrophiles. Organocopper reagents are now commonly used in organic synthesis as mild, selective nucleophiles for substitution and conjugate addition reactions.

An insertion reaction is a chemical reaction where one chemical entity interposes itself into an existing bond of typically a second chemical entity e.g.:

In organic chemistry, alkynylation is an addition reaction in which a terminal alkyne is added to a carbonyl group to form an α-alkynyl alcohol.

In organometallic chemistry, metal–halogen exchange is a fundamental reaction that converts an organic halide into an organometallic product. The reaction commonly involves the use of electropositive metals and organochlorides, bromides, and iodides. Particularly well-developed is the use of metal–halogen exchange for the preparation of organolithium compounds.

Cerium compounds are compounds containing the element cerium (Ce), a lanthanide. Cerium exists in two main oxidation states, Ce(III) and Ce(IV). This pair of adjacent oxidation states dominates several aspects of the chemistry of this element. Cerium(IV) aqueous solutions may be prepared by reacting cerium(III) solutions with the strong oxidizing agents peroxodisulfate or bismuthate. The value of E(Ce4+/Ce3+) varies widely depending on conditions due to the relative ease of complexation and hydrolysis with various anions, although +1.72 V is representative. Cerium is the only lanthanide which has important aqueous and coordination chemistry in the +4 oxidation state.

References

  1. Berger, Tassilo; Lebon, Jakob; Maichle‐Mössmer, Cäcilia; Anwander, Reiner (2021). "CeCl3/ n ‐BuLi: Unraveling Imamoto's Organocerium Reagent". Angewandte Chemie International Edition. 60 (28): 15622–15631. doi:10.1002/anie.202103889. PMC   8362106 . PMID   33905590.
  2. 1 2 3 4 5 6 Liu, H.J.; Shia, K.S.; Shang, X.; Zhu, B.Y. (1999), "Organocerium Compounds in Synthesis", Tetrahedron, 55 (13): 3803–3830, doi:10.1016/S0040-4020(99)00114-3
  3. 1 2 3 Bartoli, G.; Marcantoni, E.; Marcolini, M.; Sambri, L. (2010), "Applications of CeCl3 as an Envitonmentally Friendly Promoter in Organic Chemistry", Chemical Reviews, 110 (10): 6104–6143, doi:10.1021/cr100084g, PMID   20731375
  4. Evans, William J.; Rego, Daniel B.; Ziller, Joseph W. (2006). "Synthesis, Structure, and 15N NMR Studies of Paramagnetic Lanthanide Complexes Obtained by Reduction of Dinitrogen". Inorganic Chemistry. 45 (26): 10790–10798. doi:10.1021/ic061485g. PMID   17173438.
  5. Anwander, Reiner; Dolg, Michael; Edelmann, Frank T. (2017). "The difficult search for organocerium(<SCP>iv</SCP>) compounds". Chemical Society Reviews. 46 (22): 6697–6709. doi:10.1039/C7CS00147A. PMID   28913523.
  6. Smith, Michael B. (2017-01-01), Smith, Michael B. (ed.), "Chapter 11 - Carbon-Carbon Bond-Forming Reactions: Cyanide, Alkyne Anions, Grignard Reagents, and Organolithium Reagents", Organic Synthesis (Fourth Edition), Boston: Academic Press, pp. 547–603, doi:10.1016/b978-0-12-800720-4.00011-8, ISBN   978-0-12-800720-4 , retrieved 2023-12-03
  7. 1 2 Imamoto, T.; Suguira, Y.; Takiyama, N. (1984), "Organocerium reagents. Nucleophilic Addition to Easily Enolizable Ketones", Tetrahedron Letters, 25 (38): 4233–4236, doi:10.1016/S0040-4039(01)81404-0
  8. Carey, Francis A.; Sundberg, Richard J. (2007). Advanced Organic Chemistry: Part B: Reactions and Synthesis (5th ed.). New York: Springer. p. 664-665. ISBN   978-0387683546.
  9. Carey, Francis A.; Sundberg, Richard J. (2007). Advanced Organic Chemistry: Part B: Reactions and Synthesis (5th ed.). New York: Springer. p. 665. ISBN   978-0387683546.
  10. Imamoto, Tsuneo; Sugiura, Yasushi (1985-04-16). "Selective 1,2-addition of organocerium(III) reagents to α,β-unsaturated carbonyl compounds". Journal of Organometallic Chemistry. 285 (1): C21–C23. doi:10.1016/0022-328X(85)87395-2. ISSN   0022-328X.
  11. Berger, Tassilo; Lebon, Jakob; Maichle‐Mössmer, Cäcilia; Anwander, Reiner (2021-07-05). "CeCl 3 / n ‐BuLi: Unraveling Imamoto's Organocerium Reagent". Angewandte Chemie International Edition. 60 (28): 15622–15631. doi:10.1002/anie.202103889. ISSN   1433-7851. PMC   8362106 . PMID   33905590.
  12. Carey, Francis A.; Sundberg, Richard J. (2007). Advanced Organic Chemistry: Part B: Reactions and Synthesis (5th ed.). New York: Springer. p. 666. ISBN   978-0387683546.