Organocobalt chemistry

Last updated
Vitamin B12 and related cofactors are organocobalt compounds. Cobalamin skeletal.svg
Vitamin B12 and related cofactors are organocobalt compounds.

Organocobalt chemistry is the chemistry of organometallic compounds containing a carbon to cobalt chemical bond. Organocobalt compounds are involved in several organic reactions and the important biomolecule vitamin B12 has a cobalt-carbon bond. Many organocobalt compounds exhibit useful catalytic properties, the preeminent example being dicobalt octacarbonyl. [1]

Contents

Alkyl complexes

Co(4-norbornyl)4 is a rare example of a low-spin tetrahedral complex and a rare case of an organocobalt(V) derivative. Co(4-norbornyl)4.svg
Co(4-norbornyl)4 is a rare example of a low-spin tetrahedral complex and a rare case of an organocobalt(V) derivative.

Most fundamental are the cobalt complexes with only alkyl ligands. Examples include Co(4-norbornyl)4 and its cation. [3]

Alkylcobalt is represented by vitamin B12 and related enzymes. In methylcobalamin the ligand is a methyl group, which is electrophilic. in vitamin B12, the alkyl ligand is an adenosyl group. Related to vitamin B12 are cobalt porphyrins, dimethylglyoximates, and related complexes of Schiff base ligands. These synthetic compounds also form alkyl derivatives that undergo diverse reactions reminiscent of the biological processes. The weak cobalt(III)-carbon bond in vitamin B12 analogues can be exploited in a type of Cobalt mediated radical polymerization of acrylic and vinyl esters (e.g. vinyl acetate), acrylic acid and acrylonitrile. [4]

Carbonyl complexes

Dicobalt octacarbonyl is produced by the carbonylation of cobalt salts. It and its phosphine derivatives are among the most widely used organocobalt compounds. Heating Co2(CO)8 gives Co4(CO)12. Very elaborate cobalt-carbonyl clusters have been prepared starting from these complexes. Heating cobalt carbonyl with bromoform gives methylidynetricobaltnonacarbonyl. Dicobalt octacarbonyl also reacts with alkynes to give dicobalt hexacarbonyl acetylene complexes with the formula Co2(CO)6(C2R2). Because they can be removed later, the cobalt carbonyl centers function as a protective group for the alkyne. In the Nicholas reaction an alkyne group is also protected and at the same time the alpha-carbon position is activated for nucleophilic substitution.

Cp, allyl, and alkene compounds

Sandwich compounds

Co(1,5-cyclooctadiene)(cyclooctenyl). Co(C8H12)(C8H13).png
Co(1,5-cyclooctadiene)(cyclooctenyl).

Organocobalt compounds are known with alkene, allyl, diene, and Cp ligands. A famous sandwich compound is cobaltocene, a rare example of low-spin Co(II) complex. This 19-electron metallocene is used as a reducing agent and as a source of CpCo. Other sandwich compounds are CoCp(C6Me6) and Co(C6Me6)2, with 20 electrons and 21 electrons, respectively. Reduction of anhydrous cobalt(II) chloride with sodium in the presence of cyclooctadiene gives Co(cyclooctadiene)(cyclooctenyl), a synthetically versatile reagent. [5]

CpCo(CO)2 and derivatives

The half-sandwich compounds of the type CpCoL2 have been well investigated (L = CO, alkene). The complexes CpCo(C2H4)2 and CpCo(cod) catalyze alkyne trimerisation, [6] which has been applied to the synthesis of a variety of complex structures. [7]

Mechanism proposed for trimerisation of alkyne to give arenes. AlkynetrimerizationMechanism.png
Mechanism proposed for trimerisation of alkyne to give arenes.

Applications

Mechanism of cobalt-catalyzed hydroformylation. The process begins with dissociation of CO from cobalt tetracarbonyl hydride to give the 16-electron species (step 1). Subsequent binding of alkene gives an 18e species (step 2). In step 3, the olefin inserts to give the 16e alkyl tricarbonyl. Coordination of another equivalent of CO give alkyl tetracarbonyl (step 4). Migratory insertion of CO gives the 16e acyl in step 5. In step 6, oxidative addition of hydrogen gives a dihydrido complex, which in step 7 releases aldehyde by reductive elimination. Step 8 is unproductive and reversible. Hydroformylation Mechanism V.1.svg
Mechanism of cobalt-catalyzed hydroformylation. The process begins with dissociation of CO from cobalt tetracarbonyl hydride to give the 16-electron species (step 1). Subsequent binding of alkene gives an 18e species (step 2). In step 3, the olefin inserts to give the 16e alkyl tricarbonyl. Coordination of another equivalent of CO give alkyl tetracarbonyl (step 4). Migratory insertion of CO gives the 16e acyl in step 5. In step 6, oxidative addition of hydrogen gives a dihydrido complex, which in step 7 releases aldehyde by reductive elimination. Step 8 is unproductive and reversible.

Dicobalt octacarbonyl is used commercially for hydroformylation of alkenes. A key intermediate is cobalt tetracarbonyl hydride (HCo(CO)4). Processes involving cobalt are practiced commercially mainly for the production of C7-C14 alcohols used for the production of surfactants. [10] [11] Many hydroformylations have switched from cobalt-based processes to rhodium-based processes, despite the great expense of that metal. Replacing H2 by water or an alcohol, the reaction product is a carboxylic acid or an ester. An example of this reaction type is the conversion of butadiene to adipic acid. Cobalt catalysts (together with iron) are relevant in the Fischer–Tropsch process in which it is assumed that organocobalt intermediates form.

Cobalt complexes have been applies to the synthesis of pyridine derivatives starting from alkynes and nitriles.

Aspirational applications

Although really only dicobalt octacarbonyl has achieved commercial success, many reports have appeared promising applications. [12] [13] [14] Often these ventures are motivated by the use of "earth abundant" catalysts. [15]

Related Research Articles

<span class="mw-page-title-main">Organometallic chemistry</span> Study of organic compounds containing metal(s)

Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and selenium, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide, cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. Metal β-diketonates, alkoxides, dialkylamides, and metal phosphine complexes are representative members of this class. The field of organometallic chemistry combines aspects of traditional inorganic and organic chemistry.

In organic chemistry, hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes from alkenes. This chemical reaction entails the net addition of a formyl group and a hydrogen atom to a carbon-carbon double bond. This process has undergone continuous growth since its invention: production capacity reached 6.6×106 tons in 1995. It is important because aldehydes are easily converted into many secondary products. For example, the resultant aldehydes are hydrogenated to alcohols that are converted to detergents. Hydroformylation is also used in speciality chemicals, relevant to the organic synthesis of fragrances and pharmaceuticals. The development of hydroformylation is one of the premier achievements of 20th-century industrial chemistry.

An alkyne trimerisation is a [2+2+2] cycloaddition reaction in which three alkyne units react to form a benzene ring. The reaction requires a metal catalyst. The process is of historic interest as well as being applicable to organic synthesis. Being a cycloaddition reaction, it has high atom economy. Many variations have been developed, including cyclisation of mixtures of alkynes and alkenes as well as alkynes and nitriles.

A transition metal carbene complex is an organometallic compound featuring a divalent organic ligand. The divalent organic ligand coordinated to the metal center is called a carbene. Carbene complexes for almost all transition metals have been reported. Many methods for synthesizing them and reactions utilizing them have been reported. The term carbene ligand is a formalism since many are not derived from carbenes and almost none exhibit the reactivity characteristic of carbenes. Described often as M=CR2, they represent a class of organic ligands intermediate between alkyls (−CR3) and carbynes (≡CR). They feature in some catalytic reactions, especially alkene metathesis, and are of value in the preparation of some fine chemicals.

<span class="mw-page-title-main">Pauson–Khand reaction</span> Chemical reaction

The Pauson–Khand (PK) reaction is a chemical reaction, described as a [2+2+1] cycloaddition. In it, an alkyne, an alkene and carbon monoxide combine into a α,β-cyclopentenone in the presence of a metal-carbonyl catalyst.

<span class="mw-page-title-main">Metal carbonyl</span> Coordination complexes of transition metals with carbon monoxide ligands

Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometallic complexes.

<span class="mw-page-title-main">Dicobalt octacarbonyl</span> Chemical compound

Dicobalt octacarbonyl is an organocobalt compound with composition Co2(CO)8. This metal carbonyl is used as a reagent and catalyst in organometallic chemistry and organic synthesis, and is central to much known organocobalt chemistry. It is the parent member of a family of hydroformylation catalysts. Each molecule consists of two cobalt atoms bound to eight carbon monoxide ligands, although multiple structural isomers are known. Some of the carbonyl ligands are labile.

A carbometallation is any reaction where a carbon-metal bond reacts with a carbon-carbon π-bond to produce a new carbon-carbon σ-bond and a carbon-metal σ-bond. The resulting carbon-metal bond can undergo further carbometallation reactions or it can be reacted with a variety of electrophiles including halogenating reagents, carbonyls, oxygen, and inorganic salts to produce different organometallic reagents. Carbometallations can be performed on alkynes and alkenes to form products with high geometric purity or enantioselectivity, respectively. Some metals prefer to give the anti-addition product with high selectivity and some yield the syn-addition product. The outcome of syn and anti- addition products is determined by the mechanism of the carbometallation.

In chemistry, carbonylation refers to reactions that introduce carbon monoxide (CO) into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

In organometallic chemistry, a migratory insertion is a type of reaction wherein two ligands on a metal complex combine. It is a subset of reactions that very closely resembles the insertion reactions, and both are differentiated by the mechanism that leads to the resulting stereochemistry of the products. However, often the two are used interchangeably because the mechanism is sometimes unknown. Therefore, migratory insertion reactions or insertion reactions, for short, are defined not by the mechanism but by the overall regiochemistry wherein one chemical entity interposes itself into an existing bond of typically a second chemical entity e.g.:

<span class="mw-page-title-main">Cyclopentadienylcobalt dicarbonyl</span> Chemical compound

Cyclopentadienylcobalt dicarbonyl is an organocobalt compound with formula (C5H5)Co(CO)2, abbreviated CpCo(CO)2. It is an example of a half-sandwich complex. It is a dark red air sensitive liquid. This compound features one cyclopentadienyl ring that is bound in an η5-manner and two carbonyl ligands. The compound is soluble in common organic solvents.

Organoiron chemistry is the chemistry of iron compounds containing a carbon-to-iron chemical bond. Organoiron compounds are relevant in organic synthesis as reagents such as iron pentacarbonyl, diiron nonacarbonyl and disodium tetracarbonylferrate. While iron adopts oxidation states from Fe(−II) through to Fe(VII), Fe(IV) is the highest established oxidation state for organoiron species. Although iron is generally less active in many catalytic applications, it is less expensive and "greener" than other metals. Organoiron compounds feature a wide range of ligands that support the Fe-C bond; as with other organometals, these supporting ligands prominently include phosphines, carbon monoxide, and cyclopentadienyl, but hard ligands such as amines are employed as well.

Organoplatinum chemistry is the chemistry of organometallic compounds containing a carbon to platinum chemical bond, and the study of platinum as a catalyst in organic reactions. Organoplatinum compounds exist in oxidation state 0 to IV, with oxidation state II most abundant. The general order in bond strength is Pt-C (sp) > Pt-O > Pt-N > Pt-C (sp3). Organoplatinum and organopalladium chemistry are similar, but organoplatinum compounds are more stable and therefore less useful as catalysts.

<span class="mw-page-title-main">Cobalt tetracarbonyl hydride</span> Chemical compound

Cobalt tetracarbonyl hydride is an organometallic compound with the formula HCo(CO)4. It is a volatile, yellow liquid that forms a colorless vapor and has an intolerable odor. The compound readily decomposes upon melt and in absentia of high CO partial pressures forms Co2(CO)8. Despite operational challenges associated with its handling, the compound has received considerable attention for its ability to function as a catalyst in hydroformylation. In this respect, HCo(CO)4 and related derivatives have received significant academic interest for their ability to mediate a variety of carbonylation (introduction of CO into inorganic compounds) reactions.

In organometallic chemistry, bent metallocenes are a subset of metallocenes. In bent metallocenes, the ring systems coordinated to the metal are not parallel, but are tilted at an angle. A common example of a bent metallocene is Cp2TiCl2. Several reagents and much research is based on bent metallocenes.

<span class="mw-page-title-main">Metal-phosphine complex</span>

A metal-phosphine complex is a coordination complex containing one or more phosphine ligands. Almost always, the phosphine is an organophosphine of the type R3P (R = alkyl, aryl). Metal phosphine complexes are useful in homogeneous catalysis. Prominent examples of metal phosphine complexes include Wilkinson's catalyst (Rh(PPh3)3Cl), Grubbs' catalyst, and tetrakis(triphenylphosphine)palladium(0).

<span class="mw-page-title-main">Cyclopentadienyliron dicarbonyl dimer</span> Chemical compound

Cyclopentadienyliron dicarbonyl dimer is an organometallic compound with the formula [(η5-C5H5)Fe(CO)2]2, often abbreviated to Cp2Fe2(CO)4, [CpFe(CO)2]2 or even Fp2, with the colloquial name "fip dimer". It is a dark reddish-purple crystalline solid, which is readily soluble in moderately polar organic solvents such as chloroform and pyridine, but less soluble in carbon tetrachloride and carbon disulfide. Cp2Fe2(CO)4 is insoluble in but stable toward water. Cp2Fe2(CO)4 is reasonably stable to storage under air and serves as a convenient starting material for accessing other Fp (CpFe(CO)2) derivatives (described below).

<span class="mw-page-title-main">Metal carbonyl hydride</span>

Metal carbonyl hydrides are complexes of transition metals with carbon monoxide and hydride as ligands. These complexes are useful in organic synthesis as catalysts in homogeneous catalysis, such as hydroformylation.

In organometallic chemistry, a transition metal alkyne complex is a coordination compound containing one or more alkyne ligands. Such compounds are intermediates in many catalytic reactions that convert alkynes to other organic products, e.g. hydrogenation and trimerization.

Organoniobium chemistry is the chemistry of compounds containing niobium-carbon (Nb-C) bonds. Compared to the other group 5 transition metal organometallics, the chemistry of organoniobium compounds most closely resembles that of organotantalum compounds. Organoniobium compounds of oxidation states +5, +4, +3, +2, +1, 0, -1, and -3 have been prepared, with the +5 oxidation state being the most common.

References

  1. Omae, Iwao (2007). "Three characteristic reactions of organocobalt compounds in organic synthesis". Applied Organometallic Chemistry . 21 (5): 318–344. doi:10.1002/aoc.1213.
  2. B. K. Bower and H. G. Tennent (1972). "Transition metal bicyclo[2.2.1]hept-1-yls". J. Am. Chem. Soc. 94 (7): 2512–2514. doi:10.1021/ja00762a056.
  3. Byrne, Erin K.; Theopold, Klaus H. (1987-02-01). "Redox chemistry of tetrakis(1-norbornyl)cobalt. Synthesis and Characterization of a Cobalt(V) Alkyl and Self-Exchange Rate of a Co(III)/Co(IV) Couple". Journal of the American Chemical Society. 109 (4): 1282–1283. doi:10.1021/ja00238a066. ISSN   0002-7863.
  4. Antoine, Debuigne; Poli, Rinaldo; Jérôme, Christine; Jérôme, Robert; Detrembleur, Christophe (2009). "Overview of Cobalt-Mediated Radical Polymerization: Roots, State of the Art and Future Prospects" (PDF). Progress in Polymer Science . 34 (3): 211–239. doi:10.1016/j.progpolymsci.2008.11.003. S2CID   95760628.
  5. Gosser, L. W.; Cushing, M. A. Jr. (1977). "Π-Cyclooctenyl-π-L,5-Cycloocta-Dienecobalt". π-Cyclooctenyl-π-1,5-cyclooctadienecobalt. Inorganic Syntheses. Vol. 17. pp. 112–15. doi:10.1002/9780470132487.ch32. ISBN   978-0-470-13248-7.
  6. Cobalt-Catalyzed Cyclotrimerization of Alkynes: The Answer to the Puzzle of Parallel Reaction Pathways Nicolas Agenet, Vincent Gandon, K. Peter C. Vollhardt, Max Malacria, Corinne Aubert J. Am. Chem. Soc.; 2007; 129(28) pp 8860 - 8871; (Article) doi : 10.1021/ja072208r
  7. Chebny VJ, Dhar D, Lindeman SV, Rathore R (2006). "Simultaneous Ejection of Six Electrons at a Constant Potential by Hexakis(4-ferrocenylphenyl)benzene". Org. Lett. 8 (22): 5041–5044. doi:10.1021/ol061904d. PMID   17048838.
  8. Richard F. Heck; David S. Breslow (1961). "The Reaction of Cobalt Hydrotetracarbonyl with Olefins". Journal of the American Chemical Society . 83 (19): 4023–4027. doi:10.1021/ja01480a017..
  9. Jack Halpern (2001). "'Organometallic chemistry at the threshold of a new millennium. Retrospect and prospect". Pure and Applied Chemistry . 73 (2): 209–220. doi: 10.1351/pac200173020209 .
  10. Hebrard, Frédéric; Kalck, Philippe (2009). "Cobalt-Catalyzed Hydroformylation of Alkenes: Generation and Recycling of the Carbonyl Species, and Catalytic Cycle". Chemical Reviews. 109 (9): 4272–4282. doi:10.1021/cr8002533. PMID   19572688.
  11. Boy Cornils, Wolfgang A. Herrmann, Chi-Huey Wong, Horst Werner Zanthoff: Catalysis from A to Z: A Concise Encyclopedia, 2408 Seiten, Verlag Wiley-VCH Verlag GmbH & Co. KGaA, (2012), ISBN   3-527-33307-X.
  12. Liu, Weiping; Sahoo, Basudev; Junge, Kathrin; Beller, Matthias (2018). "Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations". Accounts of Chemical Research. 51 (8): 1858–1869. doi:10.1021/acs.accounts.8b00262. PMID   30091891. S2CID   51954703.
  13. Guo, Jun; Cheng, Zhaoyang; Chen, Jianhui; Chen, Xu; Lu, Zhan (2021). "Iron- and Cobalt-Catalyzed Asymmetric Hydrofunctionalization of Alkenes and Alkynes". Accounts of Chemical Research. 54 (11): 2701–2716. doi:10.1021/acs.accounts.1c00212. PMID   34011145. S2CID   234792059.
  14. Biswas, Souvagya; Parsutkar, Mahesh M.; Jing, Stanley M.; Pagar, Vinayak V.; Herbort, James H.; Rajanbabu, T. V. (2021). "A New Paradigm in Enantioselective Cobalt Catalysis: Cationic Cobalt(I) Catalysts for Heterodimerization, Cycloaddition, and Hydrofunctionalization Reactions of Olefins". Accounts of Chemical Research. 54 (24): 4545–4564. doi:10.1021/acs.accounts.1c00573. PMC   8721816 . PMID   34847327.
  15. Chirik, Paul J. (2015). "Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands". Accounts of Chemical Research. 48 (6): 1687–1695. doi: 10.1021/acs.accounts.5b00134 . PMID   26042837.