Names | |
---|---|
Preferred IUPAC name Ethenyl acetate | |
Systematic IUPAC name Ethenyl ethanoate | |
Other names
| |
Identifiers | |
3D model (JSmol) | |
1209327 | |
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.003.224 |
EC Number |
|
KEGG | |
MeSH | C011566 |
PubChem CID | |
UNII | |
UN number | 1301 |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C4H6O2 | |
Molar mass | 86.090 g·mol−1 |
Appearance | Colorless liquid |
Odor | Sweet, pleasant, fruity; may be sharp and irritating [1] |
Density | 0.934 g/cm3 |
Melting point | −93.5 °C (−136.3 °F; 179.7 K) |
Boiling point | 72.7 °C (162.9 °F; 345.8 K) |
−46.4×10−6 cm3/mol | |
Hazards | |
GHS labelling: | |
Danger | |
H225, H332, H335, H351 | |
P201, P202, P210, P233, P240, P241, P242, P243, P261, P271, P280, P281, P303+P361+P353, P304+P312, P304+P340, P308+P313, P312, P370+P378, P403+P233, P403+P235, P405, P501 | |
NFPA 704 (fire diamond) | |
Flash point | −8 °C (18 °F; 265 K) |
427 °C (801 °F; 700 K) | |
Explosive limits | 2.6–13.40% |
NIOSH (US health exposure limits): | |
PEL (Permissible) | none [2] |
Safety data sheet (SDS) | ICSC 0347 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Vinyl acetate is an organic compound with the formula CH3CO2CH=CH2. This colorless liquid is the precursor to polyvinyl acetate, ethene-vinyl acetate copolymers, polyvinyl alcohol, and other important industrial polymers. [3]
The worldwide production capacity of vinyl acetate was estimated at 6,969,000 tonnes/year in 2007, with most capacity concentrated in the United States (1,585,000 all in Texas), China (1,261,000), Japan (725,000) and Taiwan (650,000). [4] The average list price for 2008 was US$1600/tonne. Celanese is the largest producer (ca 25% of the worldwide capacity), while other significant producers include China Petrochemical Corporation (7%), Chang Chun Group (6%), and LyondellBasell (5%). [4]
It is a key ingredient in furniture glue. [5]
Vinyl acetate is the acetate ester of vinyl alcohol. Since vinyl alcohol is highly unstable (with respect to acetaldehyde), the preparation of vinyl acetate is more complex than the synthesis of other acetate esters.
The major industrial route involves the reaction of ethylene and acetic acid with oxygen in the presence of a palladium catalyst. [6]
This method has replaced the addition of acetic acid to acetylene. The main side reaction is the combustion of organic precursors.
Isotope labeling and kinetics experiments suggest that the mechanism involves PdCH2CH2OAc-containing intermediates. Beta-hydride elimination would generate vinyl acetate and a palladium hydride, which would be oxidized to give hydroxide. [7]
Vinyl acetate was once mainly prepared by hydroesterification, i.e., the addition of acetic acid to acetylene in the presence of metal catalysts. Using mercury(II) catalysts, vinyl acetate was first prepared by Fritz Klatte in 1912. [3] Presently, zinc acetate is used as the catalyst:
Approximately 1/3 of the world's production relies on this route, which, because it is environmentally messy, is mainly practiced in countries with relaxed environmental regulations, such as China.
Another route to vinyl acetate involves thermal decomposition of ethylidene diacetate:
It can be polymerized to give polyvinyl acetate (PVAc). With other monomers it can be used to prepare various copolymers such as ethylene-vinyl acetate (EVA), vinyl acetate-acrylic acid (VA/AA), polyvinyl chloride acetate (PVCA), and polyvinylpyrrolidone (Vp/Va copolymer, used in hair gels). [8] Due to the instability of the radical, attempts to control the polymerization by most "living/controlled" radical processes have proved problematic. However, RAFT (or more specifically, MADIX) polymerization offers a convenient method of controlling the synthesis of PVA by the addition of a xanthate or a dithiocarbamate chain transfer agent.
Vinyl acetate is useful in organic synthesis. [9] Transacetylation is used to obtain enantioenriched alcohols and esters. Iridium-catalyzed transacetylation have also been demonstrated: [10] [11]
Transvinylation is also possible using vinyl acetate. It undergoes Diels-Alder reactions with dienes.
Vinyl acetate undergoes many of the reactions anticipated for an alkene and an ester. Bromine adds to give the dibromide. Hydrogen halides add to give 1-haloethyl acetates, which cannot be generated by other methods because of the non-availability of the corresponding halo-alcohols. Acetic acid adds in the presence of palladium catalysts to give ethylidene diacetate, CH3CH(OAc)2. It undergoes transesterification with a variety of carboxylic acids. [12] The alkene also undergoes Diels–Alder and 2+2 cycloadditions.
Tests suggest that vinyl acetate has low toxicity. Oral LD50 for rats is 2920 mg/kg. [3]
On January 31, 2009, the Government of Canada's final assessment concluded that exposure to vinyl acetate is not harmful to human health. [13] This decision under the Canadian Environmental Protection Act (CEPA) was based on new information received during the public comment period, as well as more recent information from the risk assessment conducted by the European Union.
In the context of large-scale release into the environment, it is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), under which it "does not meet toxicity criteria[,] but because of its acute lethality, high production volume [or] known risk is considered a chemical of concern". By this law, it is subject to strict reporting requirements by facilities that produce, store, or use it in quantities greater than 1000 pounds. [14]
In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. These compounds contain a distinctive functional group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.
Acetaldehyde is an organic chemical compound with the formula CH3CH=O, sometimes abbreviated as MeCH=O. It is a colorless liquid or gas, boiling near room temperature. It is one of the most important aldehydes, occurring widely in nature and being produced on a large scale in industry. Acetaldehyde occurs naturally in coffee, bread, and ripe fruit, and is produced by plants. It is also produced by the partial oxidation of ethanol by the liver enzyme alcohol dehydrogenase and is a contributing cause of hangover after alcohol consumption. Pathways of exposure include air, water, land, or groundwater, as well as drink and smoke. Consumption of disulfiram inhibits acetaldehyde dehydrogenase, the enzyme responsible for the metabolism of acetaldehyde, thereby causing it to build up in the body.
Transesterification is the process of exchanging the organic functional group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. Strong acids catalyze the reaction by donating a proton to the carbonyl group, thus making it a more potent electrophile. Bases catalyze the reaction by removing a proton from the alcohol, thus making it more nucleophilic. The reaction can also be accomplished with the help of enzymes, particularly lipases.
Polyvinyl acetate (PVA, PVAc, poly(ethenyl ethanoate)), commonly known as wood glue (a term that may also refer to other types of glues), PVA glue, white glue, carpenter's glue, school glue, or Elmer's Glue in the US, is a widely available adhesive used for porous materials like wood, paper, and cloth. An aliphatic rubbery synthetic polymer with the formula (C4H6O2)n, it belongs to the polyvinyl ester family, with the general formula −[RCOOCHCH2]−. It is a type of thermoplastic.
In chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed acetate esters or simply acetates. Deacetylation is the opposite reaction, the removal of an acetyl group from a chemical compound.
Ethyl acetate is the organic compound with the formula CH3CO2CH2CH3, simplified to C4H8O2. This flammable, colorless liquid has a characteristic sweet smell and is used in glues, nail polish removers, and the decaffeination process of tea and coffee. Ethyl acetate is the ester of ethanol and acetic acid; it is manufactured on a large scale for use as a solvent.
Acetic anhydride, or ethanoic anhydride, is the chemical compound with the formula (CH3CO)2O. Commonly abbreviated Ac2O, it is the simplest isolable anhydride of a carboxylic acid and is widely used as a reagent in organic synthesis. It is a colorless liquid that smells strongly of acetic acid, which is formed by its reaction with moisture in the air.
Acetyl chloride is an acyl chloride derived from acetic acid. It belongs to the class of organic compounds called acid halides. It is a colorless, corrosive, volatile liquid. Its formula is commonly abbreviated to AcCl.
In chemistry, a dehydration reaction is a chemical reaction that involves the loss of water from the reacting molecule or ion. Dehydration reactions are common processes, the reverse of a hydration reaction.
Methyl methacrylate (MMA) is an organic compound with the formula CH2=C(CH3)COOCH3. This colorless liquid, the methyl ester of methacrylic acid (MAA), is a monomer produced on a large scale for the production of poly(methyl methacrylate) (PMMA).
Palladium(II) acetate is a chemical compound of palladium described by the formula [Pd(O2CCH3)2]n, abbreviated [Pd(OAc)2]n. It is more reactive than the analogous platinum compound. Depending on the value of n, the compound is soluble in many organic solvents and is commonly used as a catalyst for organic reactions.
In organic chemistry an enol ether is an alkene with an alkoxy substituent. The general structure is R2C=CR-OR where R = H, alkyl or aryl. A common subfamily of enol ethers are vinyl ethers, with the formula ROCH=CH2. Important enol ethers include the reagent 3,4-dihydropyran and the monomers methyl vinyl ether and ethyl vinyl ether.
Allyl alcohol is an organic compound with the structural formula CH2=CHCH2OH. Like many alcohols, it is a water-soluble, colourless liquid. It is more toxic than typical small alcohols. Allyl alcohol is used as a precursor to many specialized compounds such as flame-resistant materials, drying oils, and plasticizers. Allyl alcohol is the smallest representative of the allylic alcohols.
Methacrylic acid, abbreviated MAA, is an organic compound with the formula CH2=C(CH3)CO2H. This colorless, viscous liquid is a carboxylic acid with an acrid unpleasant odor. It is soluble in warm water and miscible with most organic solvents. Methacrylic acid is produced industrially on a large scale as a precursor to its esters, especially methyl methacrylate (MMA), and to poly(methyl methacrylate) (PMMA).
Pivalic acid is a carboxylic acid with a molecular formula of (CH3)3CCO2H. This colourless, odiferous organic compound is solid at room temperature. Two abbreviations for pivalic acid are t-BuC(O)OH and PivOH. The pivalyl or pivaloyl group is abbreviated t-BuC(O).
Acetic acid, systematically named ethanoic acid, is an acidic, colourless liquid and organic compound with the chemical formula CH3COOH. Vinegar is at least 4% acetic acid by volume, making acetic acid the main component of vinegar apart from water. It has been used, as a component of vinegar, throughout history from at least the third century BC.
Allyl acetate is an organic compound with formula C3H5OC(O)CH3. This colourless liquid is a precursor to especially allyl alcohol, which is a useful industrial intermediate. It is the acetate ester of allyl alcohol.
Ethylidene diacetate is an organic compound with the formula (CH3CO2)2CHCH3. A colorless low-melting solid, it once served as a precursor to vinyl acetate.
In industrial chemistry, carboalkoxylation is a process for converting alkenes to esters. This reaction is a form of carbonylation. A closely related reaction is hydrocarboxylation, which employs water in place of alcohols.
In organic chemistry, vinylation is the process of attaching a vinyl group to a substrate. Many organic compounds contain vinyl groups, so the process has attracted significant interest, especially since the reaction scope includes substituted vinyl groups. The reactions can be classified according to the source of the vinyl group.
It has a sweet, pleasant, fruity smell, but the odor may be sharp and irritating to some people.
though Pidilite has had to contend with the rising price of vinyl acetate monomer, its key raw material