Vinyl propionate

Last updated
Vinyl propionate
Vinyl propionate.svg
Names
Preferred IUPAC name
Ethenyl propanoate
Other names
Vinyl propanoate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.002.994 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 203-293-5
PubChem CID
UNII
  • InChI=1S/C5H8O2/c1-3-5(6)7-4-2/h4H,2-3H2,1H3
    Key: UIWXSTHGICQLQT-UHFFFAOYSA-N
  • CCC(=O)OC=C
Properties
C5H8O2
Molar mass 100.117 g·mol−1
Appearancecolorless liquid
Density 0.917 g/cm3 (20 °C)
Boiling point 95 °C (203 °F; 368 K)
6.5 mL/L
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg
Danger
H225, H315, H319
P210, P233, P240, P241, P242, P243, P264, P280, P302+P352, P303+P361+P353, P305+P351+P338, P321, P332+P313, P337+P313, P362, P370+P378, P403+P235, P501
Flash point −2 °C (28 °F; 271 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Vinyl propionate is the organic compound with the formula CH3CH2CO2CH=CH2. This colorless liquid is the ester of propionic acid and vinyl alcohol. It is used to produce poly(vinyl propionate) as well as copolymers with acrylate esters, vinyl chloride, and vinyl acetate, some of which are used in paints. The compound resembles vinyl acetate. [1]

Since vinyl alcohol is not available, vinyl propionate is produced by the addition of propionic acid to acetylene. The reaction is catalyzed by carbon and zinc salts.

Related Research Articles

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

Transesterification is the process of exchanging the organic functional group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. Strong acids catalyze the reaction by donating a proton to the carbonyl group, thus making it a more potent electrophile. Bases catalyze the reaction by removing a proton from the alcohol, thus making it more nucleophilic. The reaction can also be accomplished with the help of other enzymes, particularly lipases.

<span class="mw-page-title-main">Acetate</span> Salt compound formed from acetic acid and a base

An acetate is a salt formed by the combination of acetic acid with a base. "Acetate" also describes the conjugate base or ion typically found in aqueous solution and written with the chemical formula C
2
H
3
O
2
. The neutral molecules formed by the combination of the acetate ion and a positive ion are also commonly called "acetates". The simplest of these is hydrogen acetate with corresponding salts, esters, and the polyatomic anion CH
3
CO
2
, or CH
3
COO
.

<span class="mw-page-title-main">Polyvinyl acetate</span> PVA, adhesive used for porous materials

Polyvinyl acetate (PVA, PVAc, poly(ethenyl ethanoate)), commonly known as wood glue, PVA glue, white glue, carpenter's glue, school glue, or Elmer's Glue in the US, is a widely available adhesive used for porous materials like wood, paper, and cloth. An aliphatic rubbery synthetic polymer with the formula (C4H6O2)n, it belongs to the polyvinyl ester family, with the general formula −[RCOOCHCH2]−. It is a type of thermoplastic.

<span class="mw-page-title-main">Propionic acid</span> Carboxylic acid with chemical formula CH3CH2CO2H

Propionic acid is a naturally occurring carboxylic acid with chemical formula CH
3
CH
2
CO
2
H
. It is a liquid with a pungent and unpleasant smell somewhat resembling body odor. The anion CH
3
CH
2
CO
2
as well as the salts and esters of propionic acid are known as propionates or propanoates.

1-Pentanol,, is an organic compound with the formula CH3CH2CH2CH2CH2OH and is classified as a primary alcohol. It is a colourless liquid with a distinctive aroma. It is one of 8 isomeric alcohols with the formula C5H11OH. It is used as a solvent, a biological drying agent and in the synthesis of some fragrance compounds. It is also a common component of fusel alcohols, the undesirable byproducts of alcoholic fermentation.

In chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed acetate esters or simply acetates. Deacetylation is the opposite reaction, the removal of an acetyl group from a chemical compound.

<span class="mw-page-title-main">Vinyl acetate</span> Chemical compound

Vinyl acetate is an organic compound with the formula CH3CO2CH=CH2. This colorless liquid is the precursor to polyvinyl acetate, ethene-vinyl acetate copolymers, polyvinyl alcohol, and other important industrial polymers.

Acidogenesis is the second stage in the four stages of anaerobic digestion:

<span class="mw-page-title-main">Palladium(II) acetate</span> Chemical compound

Palladium(II) acetate is a chemical compound of palladium described by the formula [Pd(O2CCH3)2]n, abbreviated [Pd(OAc)2]n. It is more reactive than the analogous platinum compound. Depending on the value of n, the compound is soluble in many organic solvents and is commonly used as a catalyst for organic reactions.

<span class="mw-page-title-main">1-Propanol</span> Primary alcohol compound

1-Propanol is a primary alcohol with the formula CH3CH2CH2OH and sometimes represented as PrOH or n-PrOH. It is a colourless liquid and an isomer of 2-propanol. It is formed naturally in small amounts during many fermentation processes and used as a solvent in the pharmaceutical industry, mainly for resins and cellulose esters, and, sometimes, as a disinfecting agent.

In chemistry, carbonylation refers to reactions that introduce carbon monoxide (CO) into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

Propyl propanoate (propyl propionate) is the organic compound with the molecular formula C6H12O2. It is the ester of propanol and propionic acid. Like most esters, propyl propanoate is a colorless liquid with a fruity odor. The scent of propyl propionate is described as a chemically tinged pineapple or pear. It is used in perfumery and as a solvent. The refractive index at 20 °C is 1.393.

<span class="mw-page-title-main">Allyl acetate</span> Chemical compound

Allyl acetate is an organic compound with formula C3H5OC(O)CH3. This colourless liquid is a precursor to especially allyl alcohol, which is a useful industrial intermediate. It is the acetate ester of allyl alcohol.

<span class="mw-page-title-main">Methyl propionate</span> Chemical compound

Methyl propionate, also known as methyl propanoate, is an organic compound with the molecular formula CH3CH2CO2CH3. It is a colorless liquid with a fruity, rum-like odor.

<span class="mw-page-title-main">Isopropenyl acetate</span> Chemical compound

Isopropenyl acetate is an organic compound, which is the acetate ester of the enol tautomer of acetone. This colorless liquid is significant commercially as the principal precursor to acetylacetone. In organic synthesis, it is used to prepare enol acetates of ketones and acetonides from diols.

In industrial chemistry, carboalkoxylation is a process for converting alkenes to esters. This reaction is a form of carbonylation. A closely related reaction is hydrocarboxylation, which employs water in place of alcohols

<span class="mw-page-title-main">Vinyl ester</span>

Vinyl ester refers to esters formally derived from vinyl alcohol. Commercially important examples of these monomers are vinyl acetate, vinyl propionate, and vinyl laurate.

α-Halo carboxylic acids and esters are organic compounds with the respective formulas RCHXCO2H and RCHXCO2R' where R and R' are organic substituents. The X in these compounds is a halide, usually chloride and bromide. These compounds are often used as intermediates in the preparation of more elaborate derivatives. They are often potent alkylating agents. The mono halide derivatives are chiral.

References

  1. G. Roscher (2007). "Vinyl Esters". Ullmann's Encyclopedia of Industrial Chemistry. Ullmann's Encyclopedia of Chemical Technology. Weinheim: Wiley-VCH. doi:10.1002/14356007.a27_419. ISBN   978-3-527-30673-2. S2CID   241676899.