Organoantimony chemistry

Last updated

Organoantimony chemistry is the chemistry of compounds containing a carbon to antimony (Sb) chemical bond. Relevant oxidation states are SbV and SbIII. The toxicity of antimony [1] limits practical application in organic chemistry. [2]

Contents

Syntheses

Stibines

An organoantimony synthesis typically begins with tricoordinate antimony compounds, called stibines. Antimony trichloride reacts with organolithium or Grignard reagents to give compounds of the form R3Sb:

SbCl3 + 3 RLi (or RMgCl) → R3Sb

Stibines are weak Lewis acids and do not form ate complexes. As soft Lewis donors, they see wide use in coordination chemistry [3] :348 and typically react through oxidative addition:

R3Sb + Br2 → R3SbBr2
R3Sb + O2 → R3SbO
R3Sb + B2H6 → R3Sb·BH3

This property also sensitizes them to air.

If reduced instead, stibanes typically release substituents (ligands): [3] :443

R3Sb + Na + NH3 → R2SbNa
R2SbBr + Mg → (R2Sb)2 + MgBr2

The cyclic compound stibole, a structural analog of pyrrole, has not been isolated, but substituted derivatives have. Antimony metallocenes are known as well:

14SbI3 + 3 (Cp*Al)4 → [Cp
2
Sb]+[AlI4] + 8Sb + 6 AlI3

The Cp*-Sb-Cp* angle is 154°.

Stiboranes

Pentacoordinate antimony compounds are called stiboranes, and can be synthesised from stibines and halogens:

Ph3Sb + Cl2 → Ph3SbCl2
Ph3SbCl2 + 2 PhLiPh5Sb

Like their heavier congeners, the organobismuth compounds, stiboranes form onium compounds and ate complexes. Asymmetric compounds can also be obtained through the stibonium ion:

R5Sb + X2 → [R4Sb]+[X]
[R4Sb]+[X] + R'MgX → R4R'Sb

Stibonium halides (R4SbX) tend to dimerize.

Trigonal-bipyramidal molecule pentaphenylantimony decomposes at 200 °C to triphenylstibine and biphenyl. In the related Me5Sb, proton NMR at -100 °C cannot resolve different methyl protons.

Distibines and antimony(I) compounds

Distibines are formally SbII compounds, but feature tricoordinate Sb atoms with a single Sb-Sb bond. They may have interest as thermochromes. For example, tetramethyldistibine is colorless when gas, yellow when liquid, red when solid just below the melting point of 18.5 °C, shiny-blue when cooler, and again yellow at cryogenic temperatures. [4] [3] :442 A typical synthesis first displaces an SbIII halide with an alkali metal and then reduces the resulting anion with ethylene dichloride. [3] :781–783

Like its lighter congener, arsenic, organoantimony compounds can be reduced to cyclic oligomers that are formally antimony(I) compounds. [3] :563–577

With other substituents

SbV-N bonds are unstable, except where the N is also bonded to other electron-withdrawing substituents. [5]

Reactions

Stibine oxides undergo a sort of polarized-olefin metathesis. For example, they mediate a carbonyl-imine exchange (Ar is any activated arene): [6] :399

Ph3Sb=NSO2Ar + PhC=O → Ph3Sb=O + PhC=NSO2Ar

The effect may extend vinylically: [7]

In contrast, unstabilized ylides (R3Sb=CR'2; R' not electron-withdrawing) form only with difficulty (e.g. diazo reagents). [6] :399–400

Like other metals, stibanes vicinal to a leaving group can eliminate before a proton. For example, diphenyl(β-hydroxyphenethyl)stibine decomposes in heat or acid to styrene: [6] :400–402

Ph2SbCH2CH(OH)Ph → CH2=CHPh + Ph2SbOH

As tertiary stibines also insert into haloalkyl bonds, tertiary stibines are powerful dehalogenating agents. [6] :403 However, stibanes poorly imitate active metal organometallics: only with difficulty do their ligands add to carbonyls or they power noble-metal cross couplings. [6] :403–405

Stiboranes are gentle oxidants, converting acyloins to diketones and thiols to disulfides. [6] :406–408 In air, tris(thiophenyl)stibine catalyzes a Hunsdiecker-like decarboxylative oxidation of anhydrides to alcohols. [6] :411

In ultraviolet light, distibines radicalize; the resulting radicals can displace iodide. [3] :766

See also

Related Research Articles

In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens. Halides are also commonly introduced using salts of the halides and halogen acids. Many specialized reagents exist for and introducing halogens into diverse substrates, e.g. thionyl chloride.

<span class="mw-page-title-main">Stibine</span> Chemical compound

Stibine (IUPAC name: stibane) is a chemical compound with the formula SbH3. A pnictogen hydride, this colourless, highly toxic gas is the principal covalent hydride of antimony, and a heavy analogue of ammonia. The molecule is pyramidal with H–Sb–H angles of 91.7° and Sb–H distances of 170.7 pm (1.707 Å). This gas has an offensive smell like hydrogen sulfide (rotten eggs).

<span class="mw-page-title-main">Organotin chemistry</span> Branch of organic chemistry

Organotin chemistry is the scientific study of the synthesis and properties of organotin compounds or stannanes, which are organometallic compounds containing tin–carbon bonds. The first organotin compound was diethyltin diiodide, discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn–C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

Organoselenium chemistry is the science exploring the properties and reactivity of organoselenium compounds, chemical compounds containing carbon-to-selenium chemical bonds. Selenium belongs with oxygen and sulfur to the group 16 elements or chalcogens, and similarities in chemistry are to be expected. Organoselenium compounds are found at trace levels in ambient waters, soils and sediments.

<span class="mw-page-title-main">Hydroperoxide</span> Class of chemical compounds

Hydroperoxides or peroxols are compounds of the form ROOH, where R stands for any group, typically organic, which contain the hydroperoxy functional group. Hydroperoxide also refers to the hydroperoxide anion and its salts, and the neutral hydroperoxyl radical (•OOH) consist of an unbond hydroperoxy group. When R is organic, the compounds are called organic hydroperoxides. Such compounds are a subset of organic peroxides, which have the formula ROOR. Organic hydroperoxides can either intentionally or unintentionally initiate explosive polymerisation in materials with unsaturated chemical bonds.

Organophosphorus chemistry is the scientific study of the synthesis and properties of organophosphorus compounds, which are organic compounds containing phosphorus. They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment. Some organophosphorus compounds are highly effective insecticides, although some are extremely toxic to humans, including sarin and VX nerve agents.

Technetium compounds are chemical compounds containing the chemical element technetium. Technetium can form multiple oxidation states, but often forms in the +4 and +7 oxidation states. Because technetium is radioactive, technetium compounds are extremely rare on Earth.

Bromine compounds are compounds containing the element bromine (Br). These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X2/X couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V). Bromination often leads to higher oxidation states than iodination but lower or equal oxidation states to chlorination. Bromine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Br bonds.

<span class="mw-page-title-main">Organotitanium chemistry</span>

Organotitanium chemistry is the science of organotitanium compounds describing their physical properties, synthesis, and reactions. Organotitanium compounds in organometallic chemistry contain carbon-titanium chemical bonds. They are reagents in organic chemistry and are involved in major industrial processes.

<span class="mw-page-title-main">Bismuth chloride</span> Chemical compound

Bismuth chloride (or butter of bismuth) is an inorganic compound with the chemical formula BiCl3. It is a covalent compound and is the common source of the Bi3+ ion. In the gas phase and in the crystal, the species adopts a pyramidal structure, in accord with VSEPR theory.

The thallium halides include monohalides, where thallium has oxidation state +1, trihalides in which thallium generally has oxidation state +3, and some intermediate halides containing thallium with mixed +1 and +3 oxidation states. These salts find use in specialized optical settings, such as focusing elements in research spectrophotometers. Compared to the more common zinc selenide-based optics, materials such as thallium bromoiodide enable transmission at longer wavelengths. In the infrared, this allows for measurements as low as 350 cm−1 (28 μm), whereas zinc selenide is opaque by 21.5 μm, and ZnSe optics are generally only usable to 650 cm−1 (15 μm).

There are three sets of Indium halides, the trihalides, the monohalides, and several intermediate halides. In the monohalides the oxidation state of indium is +1 and their proper names are indium(I) fluoride, indium(I) chloride, indium(I) bromide and indium(I) iodide.

Organoarsenic chemistry is the chemistry of compounds containing a chemical bond between arsenic and carbon. A few organoarsenic compounds, also called "organoarsenicals," are produced industrially with uses as insecticides, herbicides, and fungicides. In general these applications are declining in step with growing concerns about their impact on the environment and human health. The parent compounds are arsane and arsenic acid. Despite their toxicity, organoarsenic biomolecules are well known.

<span class="mw-page-title-main">Beryllium bromide</span> Chemical compound

Beryllium bromide is the chemical compound with the formula BeBr2. It is very hygroscopic and dissolves well in water. The compound is a polymer with tetrahedral coordinated Be centres.

<span class="mw-page-title-main">Organobismuth chemistry</span>

Organobismuth chemistry is the chemistry of organometallic compounds containing a carbon to bismuth chemical bond. Applications are few. The main bismuth oxidation states are Bi(III) and Bi(V) as in all higher group 15 elements. The energy of a bond to carbon in this group decreases in the order P > As > Sb > Bi. The first reported use of bismuth in organic chemistry was in oxidation of alcohols by Frederick Challenger in 1934 (using Ph3Bi(OH)2). Knowledge about methylated species of bismuth in environmental and biological media is limited.

<span class="mw-page-title-main">Metal-phosphine complex</span>

A metal-phosphine complex is a coordination complex containing one or more phosphine ligands. Almost always, the phosphine is an organophosphine of the type R3P (R = alkyl, aryl). Metal phosphine complexes are useful in homogeneous catalysis. Prominent examples of metal phosphine complexes include Wilkinson's catalyst (Rh(PPh3)3Cl), Grubbs' catalyst, and tetrakis(triphenylphosphine)palladium(0).

Polyhalogen ions are a group of polyatomic cations and anions containing halogens only. The ions can be classified into two classes, isopolyhalogen ions which contain one type of halogen only, and heteropolyhalogen ions with more than one type of halogen.

Praseodymium compounds are compounds formed by the lanthanide metal praseodymium (Pr). In these compounds, praseodymium generally exhibits the +3 oxidation state, such as PrCl3, Pr(NO3)3 and Pr(CH3COO)3. However, compounds with praseodymium in the +2 and +4 oxidation states, and unlike other lanthanides, the +5 oxidation state, are also known.

Americium compounds are compounds containing the element americium (Am). These compounds can form in the +2, +3, and +4, although the +3 oxidation state is the most common. The +5, +6 and +7 oxidation states have also been reported.

References

  1. Filella, M. (2010). "Alkyl derivatives of antimony in the environment". Metal Ions in Life Sciences. Cambridge: RSC publishing. 7: 267–301. doi:10.1039/9781849730822-00267. ISBN   978-1-84755-177-1.
  2. C. Elschenbroich, A. Salzer Organometallics : A Concise Introduction (2nd Ed) (1992) from Wiley-VCH: Weinheim. ISBN   3-527-28165-7
  3. 1 2 3 4 5 6 Patai, Saul, ed. (1994). The Chemistry of Organic Arsenic, Antimony, and Bismuth Compounds. Chemistry of Functional Groups. Chichester, UK: Wiley. doi:10.1002/0470023473. ISBN   047193044X.
  4. Organoantimony compounds with element-element bonds H.J. Breunig, R. Rosler Coordination Chemistry Reviews 163 (1997) 33-53
  5. Patai 1994 , p. 340, which immediately undercuts itself by giving an example of an -SbCl3-NMe-... complex.
  6. 1 2 3 4 5 6 7 Freedman, Leon D.; Doak, George O. (1989). "The use of organoantimony and organobismuth compounds in organic synthesis". In Hartley, Frank Robinson (ed.). The Chemistry of the MetalCarbon Bond. (Patai's) Chemistry of Functional Groups. Vol. 5. Chichester, UK: Interscience. pp. 397–413. doi:10.1002/9780470772263.ch9. ISBN   0471915564.
  7. Freedman & Doak 1989 , p. 410, which ascribes the reaction instead to a Wittig-type reaction with an ylide.