Organic acid anhydride

Last updated
Generic example of an anhydride of two carboxylic acids
.mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block;text-align:left}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}
R COOH and
R COOH, with the blue marked carboxylic acid anhydride functional group, where R stands for any group (typically hydrogen or organyl). FunktionelleGruppen Carbonsaureanhydrid.svg
Generic example of an anhydride of two carboxylic acids R COOH and R COOH, with the blue marked carboxylic acid anhydride functional group, where R stands for any group (typically hydrogen or organyl).

An organic acid anhydride is an acid anhydride that is also an organic compound. An acid anhydride is a compound that has two acyl groups bonded to the same oxygen atom. [1] A common type of organic acid anhydride is a carboxylic anhydride, where the parent acid is a carboxylic acid, the formula of the anhydride being (RC(O))2O. Symmetrical acid anhydrides of this type are named by replacing the word acid in the name of the parent carboxylic acid by the word anhydride. [2] Thus, (CH3CO)2O is called acetic anhydride.Mixed (or unsymmetrical) acid anhydrides, such as acetic formic anhydride (see below), are known, whereby reaction occurs between two different carboxylic acids. Nomenclature of unsymmetrical acid anhydrides list the names of both of the reacted carboxylic acids before the word "anhydride" (for example, the dehydration reaction between benzoic acid and propanoic acid would yield "benzoic propanoic anhydride"). [3]

Contents

One or both acyl groups of an acid anhydride may also be derived from another type of organic acid, such as sulfonic acid or a phosphonic acid. One of the acyl groups of an acid anhydride can be derived from an inorganic acid such as phosphoric acid. The mixed anhydride 1,3-bisphosphoglyceric acid, an intermediate in the formation of ATP via glycolysis, [4] is the mixed anhydride of 3-phosphoglyceric acid and phosphoric acid. Acidic oxides are also classified as acid anhydrides.

Nomenclature

The nomenclature of organic acid anhydrides is derived from the names of the constituent carboxylic acids. In symmetrical acid anhydrides, only the prefix of the original carboxylic acid is used and the suffix "anhydride" is added. For most unsymmetrical acid anhydrides - also called mixed anhydrides- the prefixes from both acids reacted are listed before the suffix, e.g., benzoic propanoic anhydride. [5]

Preparation

Organic acid anhydrides are prepared in industry by diverse means. Acetic anhydride is mainly produced by the carbonylation of methyl acetate. [6] Maleic anhydride is produced by the oxidation of benzene or butane. Laboratory routes emphasize the dehydration of the corresponding acids. The conditions vary from acid to acid, but phosphorus pentoxide is a common dehydrating agent:

2 CH3COOH + P4O10CH3C(O)OC(O)CH3 + "P4O9(OH)2"

Acid chlorides are also effective precursors: [7]

CH3C(O)Cl + HCO2Na → HCO2COCH3 + NaCl

Mixed anhydrides containing the acetyl group are prepared from ketene:

RCO2H + H2C=C=O → RCO2C(O)CH3

Reactions

Acid anhydrides are a source of reactive acyl groups, and their reactions and uses resemble those of acyl halides. In reactions with protic substrates, the reactions afford equal amounts of the acylated product and the carboxylic acid:

RC(O)OC(O)R + HY → RC(O)Y + RCO2H

for HY = HOR (alcohols), HNR'2 (ammonia, primary, secondary amines), aromatic ring (see Friedel-Crafts acylation).

Acid anhydrides tend to be less electrophilic than acyl chlorides, and only one acyl group is transferred per molecule of acid anhydride, which leads to a lower atom efficiency. The low cost, however, of acetic anhydride makes it a common choice for acetylation reactions.

Applications and occurrence of acid anhydrides

Acetic anhydride is a major industrial chemical widely used for preparing acetate esters, e.g. cellulose acetate. Maleic anhydride is the precursor to various resins by copolymerization with styrene. Maleic anhydride is a dienophile in the Diels-Alder reaction. [8]

Dianhydrides, molecules containing two acid anhydride functions, are used to synthesize polyimides and sometimes polyesters [9] and polyamides. [10] Examples of dianhydrides: pyromellitic dianhydride (PMDA), 3,3’, 4,4’ - oxydiphtalic dianhydride (ODPA), 3,3’, 4,4’-benzophenone tetracarboxylic dianhydride (BTDA), 4,4’-diphtalic (hexafluoroisopropylidene) anhydride (6FDA), benzoquinonetetracarboxylic dianhydride, ethylenetetracarboxylic dianhydride. Polyanhydrides are a class of polymers characterized by anhydride bonds that connect repeat units of the polymer backbone chain.

Biological occurrence

Natural products containing acid anhydrides have been isolated from animals, bacteria and fungi. [11] [12] [13] Examples include cantharidin from species of blister beetle, including the Spanish fly, Lytta vesicatoria, and tautomycin, from the bacterium Streptomyces spiroverticillatus . The maleidride family of fungal secondary metabolites, which possess a wide range of antibiotic and antifungal activity, are alicyclic compounds with maleic anhydride functional groups. [14] A number of proteins in prokaryotes [15] and eukaryotes [16] undergo spontaneous cleavage between the amino acid residues aspartic acid and proline via an acid anhydride intermediate. In some cases, the anhydride may then react with nucleophiles of other cellular components, such as at the surface of the bacterium Neisseria meningitidis or on proteins localized nearby. [17]

Analogues

Nitrogen

A general linear imide functional group Imide functional group.svg
A general linear imide functional group

Imides are structurally related analogues, where the bridging oxygen is replaced by nitrogen. They are similarly formed by the condensation of dicarboxylic acids with ammonia. The replacement of all oxygen atoms with nitrogen gives imidines, these are a rare functional group which are very prone to hydrolysis.

Sulfur

Sulfur can replace oxygen, either in the carbonyl group or in the bridge. In the former case, the name of the acyl group is enclosed in parentheses to avoid ambiguity in the name, [2] e.g., (thioacetic) anhydride (CH3C(S)OC(S)CH3). When two acyl groups are attached to the same sulfur atom, the resulting compound is called a thioanhydride, [2] e.g., acetic thioanhydride ((CH3C(O))2S).

See also

Related Research Articles

<span class="mw-page-title-main">Amide</span> Organic compounds of the form RC(=O)NR′R″

In organic chemistry, an amide, also known as an organic amide or a carboxamide, is a compound with the general formula R−C(=O)−NR′R″, where R, R', and R″ represent any group, typically organyl groups or hydrogen atoms. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. It can be viewed as a derivative of a carboxylic acid with the hydroxyl group replaced by an amine group ; or, equivalently, an acyl (alkanoyl) group joined to an amine group.

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is R−COOH or R−CO2H, with R referring to the alkyl, alkenyl, aryl, or other group. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is a functional group with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Acetyl group</span> Chemical group, –C(=O)CH₃

In organic chemistry, acetyl is a functional group with the chemical formula −COCH3 and the structure −C(=O)−CH3. It is sometimes represented by the symbol Ac. In IUPAC nomenclature, acetyl is called ethanoyl, although this term is rarely heard.

The following outline is provided as an overview of and topical guide to organic chemistry:

A polyamide is a polymer with repeating units linked by amide bonds.

<span class="mw-page-title-main">Dicarbonyl</span> Molecule containing two adjacent C=O groups

In organic chemistry, a dicarbonyl is a molecule containing two carbonyl groups. Although this term could refer to any organic compound containing two carbonyl groups, it is used more specifically to describe molecules in which both carbonyls are in close enough proximity that their reactivity is changed, such as 1,2-, 1,3-, and 1,4-dicarbonyls. Their properties often differ from those of monocarbonyls, and so they are usually considered functional groups of their own. These compounds can have symmetrical or unsymmetrical substituents on each carbonyl, and may also be functionally symmetrical or unsymmetrical.

In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in the Nomenclature of Organic Chemistry. Ideally, every possible organic compound should have a name from which an unambiguous structural formula can be created. There is also an IUPAC nomenclature of inorganic chemistry.

In organic chemistry, an acyl chloride is an organic compound with the functional group −C(=O)Cl. Their formula is usually written R−COCl, where R is a side chain. They are reactive derivatives of carboxylic acids. A specific example of an acyl chloride is acetyl chloride, CH3COCl. Acyl chlorides are the most important subset of acyl halides.

<span class="mw-page-title-main">Acyl halide</span> Oxoacid compound with an –OH group replaced by a halogen

In organic chemistry, an acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.

<span class="mw-page-title-main">Imide</span> Class of chemical compounds

In organic chemistry, an imide is a functional group consisting of two acyl groups bound to nitrogen. The compounds are structurally related to acid anhydrides, although imides are more resistant to hydrolysis. In terms of commercial applications, imides are best known as components of high-strength polymers, called polyimides. Inorganic imides are also known as solid state or gaseous compounds, and the imido group (=NH) can also act as a ligand.

<span class="mw-page-title-main">Polyimide</span> Class of polymers

Polyimide is a polymer containing imide groups belonging to the class of high-performance plastics. With their high heat-resistance, polyimides enjoy diverse applications in roles demanding rugged organic materials, e.g. high temperature fuel cells, displays, and various military roles. A classic polyimide is Kapton, which is produced by condensation of pyromellitic dianhydride and 4,4'-oxydianiline.

<span class="mw-page-title-main">Acetyl chloride</span> Organic compound (CH₃COCl)

Acetyl chloride is an acyl chloride derived from acetic acid. It belongs to the class of organic compounds called acid halides. It is a colorless, corrosive, volatile liquid. Its formula is commonly abbreviated to AcCl.

Nucleophilic acyl substitution describes a class of substitution reactions involving nucleophiles and acyl compounds. In this type of reaction, a nucleophile – such as an alcohol, amine, or enolate – displaces the leaving group of an acyl derivative – such as an acid halide, anhydride, or ester. The resulting product is a carbonyl-containing compound in which the nucleophile has taken the place of the leaving group present in the original acyl derivative. Because acyl derivatives react with a wide variety of nucleophiles, and because the product can depend on the particular type of acyl derivative and nucleophile involved, nucleophilic acyl substitution reactions can be used to synthesize a variety of different products.

<span class="mw-page-title-main">Thioacetic acid</span> Organosulfur compound (CH3C(O)SH)

Thioacetic acid is an organosulfur compound with the molecular formula CH3C(O)SH. It is a thioic acid: the sulfur analogue of acetic acid, as implied by the thio- prefix. It is a yellow liquid with a strong thiol-like odor. It is used in organic synthesis for the introduction of thiol groups in molecules.

<span class="mw-page-title-main">Diphenylphosphoryl azide</span> Chemical compound

Diphenylphosphoryl azide (DPPA) is an organic compound. It is widely used as a reagent in the synthesis of other organic compounds.

<span class="mw-page-title-main">Pyromellitic dianhydride</span> Chemical compound

Pyromellitic dianhydride (PMDA) is an organic compound with the formula C6H2(C2O3)2. It is the double carboxylic acid anhydride that is used in the preparation of polyimide polymers such as Kapton. It is a white, hygroscopic solid. It forms a hydrate.

<span class="mw-page-title-main">Acetyl nitrate</span> Chemical compound

Acetyl nitrate is the organic compound with the formula CH3C(O)ONO2. It is classified as the mixed anhydride of nitric and acetic acids. It is a colorless explosive liquid that fumes in moist air.

α,β-Unsaturated carbonyl compound Functional group of organic compounds

α,β-Unsaturated carbonyl compounds are organic compounds with the general structure (O=CR)−Cα=Cβ-R. Such compounds include enones and enals, but also carboxylic acids and the corresponding esters and amides. In these compounds the carbonyl group is conjugated with an alkene. Unlike the case for carbonyls without a flanking alkene group, α,β-unsaturated carbonyl compounds are susceptible to attack by nucleophiles at the β-carbon. This pattern of reactivity is called vinylogous. Examples of unsaturated carbonyls are acrolein (propenal), mesityl oxide, acrylic acid, and maleic acid. Unsaturated carbonyls can be prepared in the laboratory in an aldol reaction and in the Perkin reaction.

References

  1. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " acid anhydrides ". doi : 10.1351/goldbook.A00072
  2. 1 2 3 Panico R, Powell WH, Richer JC, eds. (1993). "Recommendation R-5.7.7". A Guide to IUPAC Nomenclature of Organic Compounds . IUPAC/Blackwell Science. pp. 123–25. ISBN   0-632-03488-2.
  3. "Nomenclature of Anhydrides". 8 November 2013.
  4. Nelson, D. L.; Cox, M. M. "Lehninger, Principles of Biochemistry" 3rd Ed. Worth Publishing: New York, 2000. ISBN   1-57259-153-6.
  5. "Nomenclature of Anhydrides". 8 November 2013.
  6. Zoeller, J. R.; Agreda, V. H.; Cook, S. L.; Lafferty, N. L.; Polichnowski, S. W.; Pond, D. M. "Eastman Chemical Company Acetic Anhydride Process" Catalysis Today (1992), volume 13, pp.73-91. doi : 10.1016/0920-5861(92)80188-S
  7. Lewis I. Krimen (1988). "Acetic Formic Anhydride". Organic Syntheses .; Collective Volume, vol. 6, p. 8
  8. Heimo Held, Alfred Rengstl, Dieter Mayer "Acetic Anhydride and Mixed Fatty Acid Anhydrides" Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a01_065
  9. Chiang, Wen-Yen; Chiang, Wen-Chang (1988-05-05). "Condensation polymerization of multifunctional monomers and properties of related polyester resins. II. Thermal properties of polyester—imide varnishes". Journal of Applied Polymer Science. 35 (6): 1433–1439. doi:10.1002/app.1988.070350603.
  10. Faghihi, Khalil; Ashouri, Mostafa; Hajibeygi, Mohsen (2013-10-25). "High Temperature and Organosoluble Poly(amide-imide)s Based on 1,4-Bis[4-aminophenoxy]butane and Aromatic Diacids by Direct Polycondensation: Synthesis and Properties". High Temperature Materials and Processes. 32 (5): 451–458. doi: 10.1515/htmp-2012-0164 . ISSN   2191-0324.
  11. Saleem, Muhammad; Hussain, Hidayat; Ahmed, Ishtiaq; Draeger, Siegfried; Schulz, Barbara; Meier, Kathrin; Steinert, Michael; Pescitelli, Gennaro; Kurtán, Tibor; Flörke, Ulrich; Krohn, Karsten (February 2011). "Viburspiran, an Antifungal Member of the Octadride Class of Maleic Anhydride Natural Products". European Journal of Organic Chemistry. 2011 (4): 808–812. doi:10.1002/ejoc.201001324.
  12. Han, Chunguang; Furukawa, Hiroyuki; Tomura, Tomohiko; Fudou, Ryosuke; Kaida, Kenichi; Choi, Bong-Keun; Imokawa, Genji; Ojika, Makoto (24 April 2015). "Bioactive Maleic Anhydrides and Related Diacids from the Aquatic Hyphomycete Tricladium castaneicola". Journal of Natural Products. 78 (4): 639–644. doi:10.1021/np500773s. PMID   25875311.
  13. Heard, David M.; Tayler, Emyr R.; Cox, Russell J.; Simpson, Thomas J.; Willis, Christine L. (3 January 2020). "Structural and synthetic studies on maleic anhydride and related diacid natural products" (PDF). Tetrahedron. 76 (1): 130717. doi:10.1016/j.tet.2019.130717. hdl:1983/53998d06-9017-4cfb-822b-c6453348000a. S2CID   209714625.
  14. Chen, Xiaolong; Zheng, Yuguo; Shen, Yinchu (May 2007). "Natural Products with Maleic Anhydride Structure: Nonadrides, Tautomycin, Chaetomellic Anhydride, and Other Compounds". Chemical Reviews. 107 (5): 1777–1830. doi:10.1021/cr050029r. PMID   17439289.
  15. Kuban, Vojtech (2020). "Structural Basis of Ca 2+-Dependent Self-Processing Activity of Repeat-in-Toxin Proteins". mBio. 11 (2): e00226-20. doi:10.1128/mBio.00226-20. PMC   7078468 . PMID   32184239.
  16. Bell, Christian (2013). "Structure of the repulsive guidance molecule (RGM)-neogenin signaling hub". Science. 341 (6141): 77–80. Bibcode:2013Sci...341...77B. doi:10.1126/science.1232322. PMC   4730555 . PMID   23744777.
  17. Scheu, Arne (2021). "NeissLock provides an inducible protein anhydride for covalent targeting of endogenous proteins". Nature Communications. 12 (1): 717. Bibcode:2021NatCo..12..717S. doi:10.1038/s41467-021-20963-5. PMC   7846742 . PMID   33514717.