Neodymium

Last updated
Neodymium, 60Nd
Neodymium2.jpg
Neodymium
Pronunciation /ˌnˈdɪmiəm/ (NEE-oh-DIM-ee-əm)
Appearancesilvery white
Standard atomic weight Ar°(Nd)
Neodymium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Nd

U
praseodymiumneodymiumpromethium
Atomic number (Z)60
Group f-block groups (no number)
Period period 6
Block   f-block
Electron configuration [ Xe ] 4f4 6s2
Electrons per shell2, 8, 18, 22, 8, 2
Physical properties
Phase at  STP solid
Melting point 1295  K (1022 °C,1872 °F) [3]
Boiling point 3347 K(3074 °C,5565 °F)
Density (at 20° C)7.007 g/cm3 [3]
when liquid (at  m.p.)6.89 g/cm3
Heat of fusion 7.14  kJ/mol
Heat of vaporization 289 kJ/mol
Molar heat capacity 27.45 J/(mol·K)
Vapor pressure
P (Pa)1101001 k10 k100 k
at T (K)159517741998(2296)(2715)(3336)
Atomic properties
Oxidation states common: +3
0, [4] +2, [5] +4
Electronegativity Pauling scale: 1.14
Ionization energies
  • 1st: 533.1 kJ/mol
  • 2nd: 1040 kJ/mol
  • 3rd: 2130 kJ/mol
Atomic radius empirical:181  pm
Covalent radius 201±6 pm
Neodymium spectrum visible.png
Spectral lines of neodymium
Other properties
Natural occurrence primordial
Crystal structure double hexagonal close-packed (dhcp)(hP4)
Lattice constants
Hexagonal.svg
a = 0.36583 nm
c = 1.17968 nm (at 20 °C) [3]
Thermal expansion 6.7×10−6/K (at 20 °C) [3] [a]
Thermal conductivity 16.5 W/(m⋅K)
Electrical resistivity poly: 643 nΩ⋅m
Magnetic ordering paramagnetic, antiferromagnetic below 20 K [6]
Molar magnetic susceptibility +5628.0×10−6 cm3/mol(287.7 K) [7]
Young's modulus 41.4 GPa
Shear modulus 16.3 GPa
Bulk modulus 31.8 GPa
Speed of sound thin rod2330 m/s(at 20 °C)
Poisson ratio 0.281
Vickers hardness 345–745 MPa
Brinell hardness 265–700 MPa
CAS Number 7440-00-8
History
Discovery Carl Gustaf Mosander (1841)
First isolation Carl Auer von Welsbach (1885)
Named byCarl Auer von Welsbach(1885)
Isotopes of neodymium
Main isotopes [8] Decay
abun­dance half-life (t1/2) mode pro­duct
142Nd27.2% stable
143Nd12.2%stable
144Nd23.8%2.29×1015 yα 140Ce
145Nd8.3%stable
146Nd17.2%stable
148Nd5.80%stable
150Nd5.60%9.3×1018 y [8] ββ 150Sm
Symbol category class.svg  Category: Neodymium
| references

Neodymium is a chemical element; it has symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth metals. It is a hard, slightly malleable, silvery metal that quickly tarnishes in air and moisture. When oxidized, neodymium reacts quickly producing pink, purple/blue and yellow compounds in the +2, +3 and +4 oxidation states. It is generally regarded as having one of the most complex spectra of the elements. [9] Neodymium was discovered in 1885 by the Austrian chemist Carl Auer von Welsbach, who also discovered praseodymium. It is present in significant quantities in the minerals monazite and bastnäsite. Neodymium is not found naturally in metallic form or unmixed with other lanthanides, and it is usually refined for general use. Neodymium is fairly common—about as common as cobalt, nickel, or copper—and is widely distributed in the Earth's crust. [10] Most of the world's commercial neodymium is mined in China, as is the case with many other rare-earth metals.

Contents

Neodymium compounds were first commercially used as glass dyes in 1927 and remain a popular additive. The color of neodymium compounds comes from the Nd3+ ion and is often a reddish-purple. This color changes with the type of lighting because of the interaction of the sharp light absorption bands of neodymium with ambient light enriched with the sharp visible emission bands of mercury, trivalent europium or terbium. Glasses that have been doped with neodymium are used in lasers that emit infrared with wavelengths between 1047 and 1062 nanometers. These lasers have been used in extremely high-power applications, such as in inertial confinement fusion. Neodymium is also used with various other substrate crystals, such as yttrium aluminium garnet in the Nd:YAG laser.

Neodymium alloys are used to make high-strength neodymium magnets, which are powerful permanent magnets. [11] These magnets are widely used in products like microphones, professional loudspeakers, in-ear headphones, high-performance hobby DC electric motors, and computer hard disks, where low magnet mass (or volume) or strong magnetic fields are required. Larger neodymium magnets are used in electric motors with a high power-to-weight ratio (e.g., in hybrid cars) and generators (e.g., aircraft and wind turbine electric generators). [12]

Physical properties

Metallic neodymium has a bright, silvery metallic luster. [13] Neodymium commonly exists in two allotropic forms, with a transformation from a double hexagonal to a body-centered cubic structure taking place at about 863 °C. [14] Neodymium, like most of the lanthanides, is paramagnetic at room temperature. It becomes an antiferromagnet upon cooling below 20 K (−253.2 °C). [15] Below this transition temperature it exhibits a set of complex magnetic phases [16] [17] that have long spin relaxation times and spin glass behavior. [18] Neodymium is a rare-earth metal that was present in the classical mischmetal at a concentration of about 18%. To make neodymium magnets it is alloyed with iron, which is a ferromagnet. [19]

Electron configuration

Neodymium is the fourth member of the lanthanide series. In the periodic table, it appears between the lanthanides praseodymium to its left and the radioactive element promethium to its right, and above the actinide uranium. Its 60 electrons are arranged in the configuration [Xe]4f46s2, of which the six 4f and 6s electrons are valence. Like most other metals in the lanthanide series, neodymium usually only uses three electrons as valence electrons, as afterwards the remaining 4f electrons are strongly bound: this is because the 4f orbitals penetrate the most through the inert xenon core of electrons to the nucleus, followed by 5d and 6s, and this increases with higher ionic charge. Neodymium can still lose a fourth electron because it comes early in the lanthanides, where the nuclear charge is still low enough and the 4f subshell energy high enough to allow the removal of further valence electrons. [20]

Chemical properties

Neodymium has a melting point of 1,024 °C (1,875 °F) and a boiling point of 3,074 °C (5,565 °F). Like other lanthanides, it usually has the oxidation state +3, but can also form in the +2 and +4 oxidation states, and even, in very rare conditions, +0. [4] Neodymium metal quickly oxidizes at ambient conditions, [14] forming an oxide layer like iron rust that can spall off and expose the metal to further oxidation; a centimeter-sized sample of neodymium corrodes completely in about a year. Nd3+ is generally soluble in water. Like its neighbor praseodymium, it readily burns at about 150 °C to form neodymium(III) oxide; the oxide then peels off, exposing the bulk metal to the further oxidation: [14]

4Nd + 3O2 → 2Nd2O3

Neodymium is an electropositive element, and it reacts slowly with cold water, or quickly with hot water, to form neodymium(III) hydroxide: [21]

2Nd (s) + 6H2O (l) → 2Nd(OH)3 (aq) + 3H2 (g)

Neodymium metal reacts vigorously with all the stable halogens: [21]

2Nd (s) + 3F2 (g) → 2NdF3 (s) [a violet substance]
2Nd (s) + 3Cl2 (g) → 2NdCl3 (s) [a mauve substance]
2Nd (s) + 3Br2 (g) → 2NdBr3 (s) [a violet substance]
2Nd (s) + 3I2 (g) → 2NdI3 (s) [a green substance]

Neodymium dissolves readily in dilute sulfuric acid to form solutions that contain the lilac Nd(III) ion. These exist as a [Nd(OH2)9]3+ complexes: [22]

2Nd (s) + 3H2SO4 (aq) → 2Nd3+ (aq) + 3SO2−4 (aq) + 3H2 (g)

Compounds

Neodymium(III) sulfate Neodym(III)sulfat.JPG
Neodymium(III) sulfate
Neodymium acetate powder Neodymium(III) acetate.jpg
Neodymium acetate powder
Neodymium(III) hydroxide powder Neodymium(III) hydroxide.jpg
Neodymium(III) hydroxide powder

Some of the most important neodymium compounds include:

Some neodymium compounds vary in color under different types of lighting. [23]

Organoneodymium compounds

Organoneodymium compounds are compounds that have a neodymium–carbon bond. These compounds are similar to those of the other lanthanides, characterized by an inability to undergo π backbonding. They are thus mostly restricted to the mostly ionic cyclopentadienides (isostructural with those of lanthanum) and the σ-bonded simple alkyls and aryls, some of which may be polymeric. [24]

Isotopes

Isotopes of neodymium  (60Nd)
Main isotopes [8] Decay
abun­dance half-life (t1/2) mode pro­duct
142Nd27.2% stable
143Nd12.2%stable
144Nd23.8%2.29×1015 yα 140Ce
145Nd8.3%stable
146Nd17.2%stable
148Nd5.80%stable
150Nd5.60%9.3×1018 y [8] ββ 150Sm
Standard atomic weight Ar°(Nd)

Naturally occurring neodymium (60Nd) is composed of five stable isotopes142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2% of the natural abundance)—and two radioisotopes with extremely long half-lives, 144Nd (alpha decay with a half-life (t1/2) of 2.29×1015 years) and 150Nd (double beta decay, t1/2 9.3×1018 years). In all, 35 radioisotopes of neodymium have been detected as of 2022, with the most stable radioisotopes being the naturally occurring ones: 144Nd and 150Nd. All of the remaining radioactive isotopes have half-lives that are shorter than twelve days, and the majority of these have half-lives that are shorter than 70 seconds; the most stable artificial isotope is 147Nd with a half-life of 10.98 days.

Neodymium also has 15 known metastable isotopes, with the most stable one being 139mNd (t1/2 = 5.5 hours), 135mNd (t1/2 = 5.5 minutes) and 133m1Nd (t1/2 ~70 seconds). The primary decay modes before the most abundant stable isotope, 142Nd, are electron capture and positron decay, and the primary mode after is beta minus decay. The primary decay products before 142Nd are praseodymium isotopes, and the primary products after 142Nd are promethium isotopes. [26] Four of the five stable isotopes are only observationally stable, which means that they are expected to undergo radioactive decay, though with half-lives long enough to be considered stable for practical purposes. [27] Additionally, some observationally stable isotopes of samarium are predicted to decay to isotopes of neodymium. [27]

Neodymium isotopes are used in various scientific applications. 142Nd has been used for the production of short-lived isotopes of thulium and ytterbium. 146Nd has been suggested for the production of 147Pm, which is a source of radioactive power. Several neodymium isotopes have been used for the production of other promethium isotopes. The decay from 147Sm (t1/2 = 1.06×1011 y) to the stable 143Nd allows for samarium–neodymium dating. [28] 150Nd has also been used to study double beta decay. [29]

History

Carl Auer von Welsbach (1858-1929), who discovered neodymium in 1885. Auer von Welsbach.jpg
Carl Auer von Welsbach (1858–1929), who discovered neodymium in 1885.

In 1751, the Swedish mineralogist Axel Fredrik Cronstedt discovered a heavy mineral from the mine at Bastnäs, later named cerite. Thirty years later, fifteen-year-old Wilhelm Hisinger, a member of the family owning the mine, sent a sample to Carl Scheele, who did not find any new elements within. In 1803, after Hisinger had become an ironmaster, he returned to the mineral with Jöns Jacob Berzelius and isolated a new oxide, which they named ceria after the dwarf planet Ceres, which had been discovered two years earlier. [31] Ceria was simultaneously and independently isolated in Germany by Martin Heinrich Klaproth. [32] Between 1839 and 1843, ceria was shown to be a mixture of oxides by the Swedish surgeon and chemist Carl Gustaf Mosander, who lived in the same house as Berzelius; he separated out two other oxides, which he named lanthana and didymia. [33] [34] [35] He partially decomposed a sample of cerium nitrate by roasting it in air and then treating the resulting oxide with dilute nitric acid. The metals that formed these oxides were thus named lanthanum and didymium . [36] Didymium was later proven to not be a single element when it was split into two elements, praseodymium and neodymium, by Carl Auer von Welsbach in Vienna in 1885. [37] [38] Von Welsbach confirmed the separation by spectroscopic analysis, but the products were of relatively low purity. Pure neodymium was first isolated in 1925. The name neodymium is derived from the Greek words neos (νέος), new, and didymos (διδύμος), twin. [14] [39] [40]

Double nitrate crystallization was the means of commercial neodymium purification until the 1950s. Lindsay Chemical Division was the first to commercialize large-scale ion-exchange purification of neodymium. Starting in the 1950s, high purity (>99%) neodymium was primarily obtained through an ion exchange process from monazite, a mineral rich in rare-earth elements. [14] The metal is obtained through electrolysis of its halide salts. Currently, most neodymium is extracted from bastnäsite and purified by solvent extraction. Ion-exchange purification is used for the highest purities (typically >99.99%). Since then, the glass technology has improved due to the improved purity of commercially available neodymium oxide and the advancement of glass technology in general. Early methods of separating the lanthanides depended on fractional crystallization, which did not allow for the isolation of high-purity neodymium until the aforementioned ion exchange methods were developed after World War II. [41]

Occurrence and production

Occurrence

Bastnasite Bastnaesite - Kischtimsk, Ural.jpg
Bastnäsite

Neodymium is rarely found in nature as a free element, instead occurring in ores such as monazite and bastnäsite (which are mineral groups rather than single minerals) that contain small amounts of all rare-earth elements. Neodymium is rarely dominant in these minerals, with exceptions such as monazite-(Nd) and kozoite-(Nd). [42] The main mining areas are in China, United States, Brazil, India, Sri Lanka, and Australia.

The Nd3+ ion is similar in size to ions of the early lanthanides of the cerium group (those from lanthanum to samarium and europium). As a result, it tends to occur along with them in phosphate, silicate and carbonate minerals, such as monazite (MIIIPO4) and bastnäsite (MIIICO3F), where M refers to all the rare-earth metals except scandium and the radioactive promethium (mostly Ce, La, and Y, with somewhat less Pr and Nd). [43] Bastnäsite is usually lacking in thorium and the heavy lanthanides, and the purification of the light lanthanides from it is less involved than from monazite. The ore, after being crushed and ground, is first treated with hot concentrated sulfuric acid, which liberates carbon dioxide, hydrogen fluoride, and silicon tetrafluoride. The product is then dried and leached with water, leaving the early lanthanide ions, including lanthanum, in solution. [43] [ failed verification ]

Solar System abundances [44]
Atomic
number
ElementRelative
amount
42 Molybdenum 2.771
47 Silver 0.590
50 Tin 4.699
58 Cerium 1.205
59 Praseodymium 0.205
60Neodymium1
74 Tungsten 0.054
90 Thorium 0.054
92 Uranium 0.022

In space

Neodymium's per-particle abundance in the Solar System is 0.083 ppb (parts per billion). [44] [b] This figure is about two thirds of that of platinum, but two and a half times more than mercury, and nearly five times more than gold. [44] The lanthanides are not usually found in space, and are much more abundant in the Earth's crust. [44] [45]

In the Earth's crust

Neodymium is a fairly common element in the Earth's crust for being a rare-earth metal. Most rare-earth metals are less abundant. Elemental abundances.svg
Neodymium is a fairly common element in the Earth's crust for being a rare-earth metal. Most rare-earth metals are less abundant.

Neodymium is classified as a lithophile under the Goldschmidt classification, meaning that it is generally found combined with oxygen. Although it belongs to the rare-earth metals, neodymium is not rare at all. Its abundance in the Earth's crust is about 41 mg/kg. [45] It is similar in abundance to lanthanum.

Production

The world's production of neodymium was about 7,000 tons in 2004. [39] The bulk of current production is from China. Historically, the Chinese government imposed strategic material controls on the element, causing large fluctuations in prices. [46] The uncertainty of pricing and availability have caused companies (particularly Japanese ones) to create permanent magnets and associated electric motors with fewer rare-earth metals; however, so far they have been unable to eliminate the need for neodymium. [47] [48] According to the US Geological Survey, Greenland holds the largest reserves of undeveloped rare-earth deposits, particularly neodymium. Mining interests clash with native populations at those sites, due to the release of radioactive substances, mainly thorium, during the mining process. [49]

Monazite acid cracking process.svg

Neodymium is typically 10–18% of the rare-earth content of commercial deposits of the light rare-earth-element minerals bastnäsite and monazite. [14] With neodymium compounds being the most strongly colored for the trivalent lanthanides, it can occasionally dominate the coloration of rare-earth minerals when competing chromophores are absent. It usually gives a pink coloration. Outstanding examples of this include monazite crystals from the tin deposits in Llallagua, Bolivia; ancylite from Mont Saint-Hilaire, Quebec, Canada; or lanthanite from Lower Saucon Township, Pennsylvania. As with neodymium glasses, such minerals change their colors under the differing lighting conditions. The absorption bands of neodymium interact with the visible emission spectrum of mercury vapor, with the unfiltered shortwave UV light causing neodymium-containing minerals to reflect a distinctive green color. This can be observed with monazite-containing sands or bastnäsite-containing ore. [50]

The demand for mineral resources, such as rare-earth elements (including neodymium) and other critical materials, has been rapidly increasing owing to the growing human population and industrial development. Recently, the requirement for a low-carbon society has led to a significant demand for energy-saving technologies such as batteries, high-efficiency motors, renewable energy sources, and fuel cells. Among these technologies, permanent magnets are often used to fabricate high-efficiency motors, with neodymium-iron-boron magnets (Nd2Fe14B sintered and bonded magnets; hereinafter referred to as NdFeB magnets) being the main type of permanent magnet in the market since their invention. [51] NdFeB magnets are used in hybrid electric vehicles, plug-in hybrid electric vehicles, electric vehicles, fuel cell vehicles, wind turbines, home appliances, computers, and many small consumer electronic devices. [52] Furthermore, they are indispensable for energy savings. Toward achieving the objectives of the Paris Agreement, the demand for NdFeB magnets is expected to increase significantly in the future. [52]

Applications

Magnets

Neodymium magnet on a mu-metal bracket from a hard drive Neodymag.jpg
Neodymium magnet on a mu-metal bracket from a hard drive

Neodymium magnets (an alloy, Nd2Fe14B) are the strongest permanent magnets known. A neodymium magnet of a few tens of grams can lift a thousand times its own weight, and can snap together with enough force to break bones. These magnets are cheaper, lighter, and stronger than samarium–cobalt magnets. However, they are not superior in every aspect, as neodymium-based magnets lose their magnetism at lower temperatures [53] and tend to corrode, [54] while samarium–cobalt magnets do not. [55]

Neodymium magnets appear in products such as microphones, professional loudspeakers, headphones, guitar and bass guitar pick-ups, and computer hard disks where low mass, small volume, or strong magnetic fields are required. Neodymium is used in the electric motors of hybrid and electric automobiles [52] and in the electricity generators of some designs of commercial wind turbines (only wind turbines with "permanent magnet" generators use neodymium). [56] For example, drive electric motors of each Toyota Prius require one kilogram (2.2 pounds) of neodymium per vehicle. [12]

Glass

A neodymium glass light bulb, with the base and inner coating removed, under two different types of light: fluorescent on the left, and incandescent on the right. Neodymium glass light bulb under fluorescent and incandescent light.jpg
A neodymium glass light bulb, with the base and inner coating removed, under two different types of light: fluorescent on the left, and incandescent on the right.
Didymium glasses ACE Didymium Glasses RX-1205-BK Z87+.JPG
Didymium glasses

Neodymium glass (Nd:glass) is produced by the inclusion of neodymium oxide (Nd2O3) in the glass melt. In daylight or incandescent light neodymium glass appears lavender, but it appears pale blue under fluorescent lighting. Neodymium may be used to color glass in shades ranging from pure violet through wine-red and warm gray. [57]

The first commercial use of purified neodymium was in glass coloration, starting with experiments by Leo Moser in November 1927. The resulting "Alexandrite" glass remains a signature color of the Moser glassworks to this day. Neodymium glass was widely emulated in the early 1930s by American glasshouses, most notably Heisey, Fostoria ("wisteria"), Cambridge ("heatherbloom"), and Steuben ("wisteria"), and elsewhere (e.g. Lalique, in France, or Murano). Tiffin's "twilight" remained in production from about 1950 to 1980. [58] Current sources include glassmakers in the Czech Republic, the United States, and China. [59]

The sharp absorption bands of neodymium cause the glass color to change under different lighting conditions, being reddish-purple under daylight or yellow incandescent light, blue under white fluorescent lighting, and greenish under trichromatic lighting. In combination with gold or selenium, red colors are produced. Since neodymium coloration depends upon "forbidden" f-f transitions deep within the atom, there is relatively little influence on the color from the chemical environment, so the color is impervious to the thermal history of the glass. However, for the best color, iron-containing impurities need to be minimized in the silica used to make the glass. The same forbidden nature of the f-f transitions makes rare-earth colorants less intense than those provided by most d-transition elements, so more has to be used in a glass to achieve the desired color intensity. The original Moser recipe used about 5% of neodymium oxide in the glass melt, a sufficient quantity such that Moser referred to these as being "rare-earth doped" glasses. Being a strong base, that level of neodymium would have affected the melting properties of the glass, and the lime content of the glass might have needed adjustments. [60]

Light transmitted through neodymium glasses shows unusually sharp absorption bands; the glass is used in astronomical work to produce sharp bands by which spectral lines may be calibrated. [14] Another application is the creation of selective astronomical filters to reduce the effect of light pollution from sodium and fluorescent lighting while passing other colours, especially dark red hydrogen-alpha emission from nebulae. [61] Neodymium is also used to remove the green color caused by iron contaminants from glass. [62]

Nd:YAG laser rod Yag-rod.jpg
Nd:YAG laser rod

Neodymium is a component of "didymium" (referring to mixture of salts of neodymium and praseodymium) used for coloring glass to make welder's and glass-blower's goggles; the sharp absorption bands obliterate the strong sodium emission at 589 nm. The similar absorption of the yellow mercury emission line at 578 nm is the principal cause of the blue color observed for neodymium glass under traditional white-fluorescent lighting. Neodymium and didymium glass are used in color-enhancing filters in indoor photography, particularly in filtering out the yellow hues from incandescent lighting. Similarly, neodymium glass is becoming widely used more directly in incandescent light bulbs. These lamps contain neodymium in the glass to filter out yellow light, resulting in a whiter light which is more like sunlight. [63] During World War I, didymium mirrors were reportedly used to transmit Morse code across battlefields. [64] Similar to its use in glasses, neodymium salts are used as a colorant for enamels. [14]

Lasers

Certain transparent materials with a small concentration of neodymium ions can be used in lasers as gain media for infrared wavelengths (1054–1064 nm), e.g. Nd:YAG (yttrium aluminium garnet), Nd:YAP (yttrium aluminium perovskite), [65] Nd:YLF (yttrium lithium fluoride), Nd:YVO4 (yttrium orthovanadate), and Nd:glass. Neodymium-doped crystals (typically Nd:YVO4) generate high-powered infrared laser beams which are converted to green laser light in commercial DPSS hand-held lasers and laser pointers. [66]

Neodymium doped glass slabs used in extremely powerful lasers for inertial confinement fusion. Laser glass slabs.jpg
Neodymium doped glass slabs used in extremely powerful lasers for inertial confinement fusion.

Trivalent neodymium ion Nd3+ was the first lanthanide from rare-earth elements used for the generation of laser radiation. The Nd:CaWO4 laser was developed in 1961. [67] Historically, it was the third laser which was put into operation (the first was ruby, the second the U3+:CaF laser). Over the years the neodymium laser became one of the most used lasers for application purposes. The success of the Nd3+ ion lies in the structure of its energy levels and in the spectroscopic properties suitable for the generation of laser radiation. In 1964 Geusic et al. [68] demonstrated the operation of neodymium ion in YAG matrix Y3Al5O12. It is a four-level laser with lower threshold and with excellent mechanical and temperature properties. For optical pumping of this material it is possible to use non-coherent flashlamp radiation or a coherent diode beam. [69]

Neodymium ions in various types of ionic crystals, and also in glasses, act as a laser gain medium, typically emitting 1064 nm light from a particular atomic transition in the neodymium ion, after being "pumped" into excitation from an external source YAG2.svg
Neodymium ions in various types of ionic crystals, and also in glasses, act as a laser gain medium, typically emitting 1064 nm light from a particular atomic transition in the neodymium ion, after being "pumped" into excitation from an external source

The current laser at the UK Atomic Weapons Establishment (AWE), the HELEN (High Energy Laser Embodying Neodymium) 1-terawatt neodymium-glass laser, can access the midpoints of pressure and temperature regions and is used to acquire data for modeling on how density, temperature, and pressure interact inside warheads. HELEN can create plasmas of around 106 K, from which opacity and transmission of radiation are measured. [70]

Neodymium glass solid-state lasers are used in extremely high power (terawatt scale), high energy (megajoules) multiple beam systems for inertial confinement fusion. Nd:glass lasers are usually frequency tripled to the third harmonic at 351 nm in laser fusion devices. [71]

Other

Other applications of neodymium include:

Biological role and precautions

Neodymium
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P305+P351+P338 [80]
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0

The early lanthanides, including neodymium, as well as lanthanum, cerium and praseodymium, have been found to be essential to some methanotrophic bacteria living in volcanic mudpots, such as Methylacidiphilum fumariolicum . [81] [82] Neodymium is not otherwise known to have a biological role in any other organisms. [83]

Neodymium metal dust is combustible and therefore an explosion hazard. Neodymium compounds, as with all rare-earth metals, are of low to moderate toxicity; however, its toxicity has not been thoroughly investigated. Ingested neodymium salts are regarded as more toxic if they are soluble than if they are insoluble. [84] Neodymium dust and salts are very irritating to the eyes and mucous membranes, and moderately irritating to skin. Breathing the dust can cause lung embolisms, and accumulated exposure damages the liver. Neodymium also acts as an anticoagulant, especially when given intravenously. [39]

Neodymium magnets have been tested for medical uses such as magnetic braces and bone repair, but biocompatibility issues have prevented widespread applications. [85] Commercially available magnets made from neodymium are exceptionally strong and can attract each other from large distances. If not handled carefully, they come together very quickly and forcefully, causing injuries. There is at least one documented case of a person losing a fingertip when two magnets he was using snapped together from 50 cm away. [86]

Another risk of these powerful magnets is that if more than one magnet is ingested, they can pinch soft tissues in the gastrointestinal tract. This has led to an estimated 1,700 emergency room visits [87] and necessitated the recall of the Buckyballs line of toys, which were construction sets of small neodymium magnets. [87] [88]

See also

Notes

  1. The thermal expansion is anisotropic: the parameters (at 20 °C) for each crystal axis are αa = 4.8×10−6/K, αc = 10.5×10−6/K, and αaverage = αV/3 = 6.7×10−6/K. [3]
  2. Abundances in the source are listed relative to silicon rather than in per-particle notation. The sum of all elements per 106 parts of silicon is 2.6682×1010 parts; lead comprises 3.258 parts.

Related Research Articles

<span class="mw-page-title-main">Dysprosium</span> Chemical element with atomic number 66 (Dy)

Dysprosium is a chemical element; it has symbol Dy and atomic number 66. It is a rare-earth element in the lanthanide series with a metallic silver luster. Dysprosium is never found in nature as a free element, though, like other lanthanides, it is found in various minerals, such as xenotime. Naturally occurring dysprosium is composed of seven isotopes, the most abundant of which is 164Dy.

<span class="mw-page-title-main">Europium</span> Chemical element with atomic number 63 (Eu)

Europium is a chemical element; it has symbol Eu and atomic number 63. Europium is a silvery-white metal of the lanthanide series that reacts readily with air to form a dark oxide coating. It is the most chemically reactive, least dense, and softest of the lanthanide elements. It is soft enough to be cut with a knife. Europium was isolated in 1901 and named after the continent of Europe. Europium usually assumes the oxidation state +3, like other members of the lanthanide series, but compounds having oxidation state +2 are also common. All europium compounds with oxidation state +2 are slightly reducing. Europium has no significant biological role and is relatively non-toxic compared to other heavy metals. Most applications of europium exploit the phosphorescence of europium compounds. Europium is one of the rarest of the rare-earth elements on Earth.

<span class="mw-page-title-main">Erbium</span> Chemical element with atomic number 68 (Er)

Erbium is a chemical element; it has symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element, originally found in the gadolinite mine in Ytterby, Sweden, which is the source of the element's name.

<span class="mw-page-title-main">Holmium</span> Chemical element with atomic number 67 (Ho)

Holmium is a chemical element; it has symbol Ho and atomic number 67. It is a rare-earth element and the eleventh member of the lanthanide series. It is a relatively soft, silvery, fairly corrosion-resistant and malleable metal. Like many other lanthanides, holmium is too reactive to be found in native form, as pure holmium slowly forms a yellowish oxide coating when exposed to air. When isolated, holmium is relatively stable in dry air at room temperature. However, it reacts with water and corrodes readily, and also burns in air when heated.

<span class="mw-page-title-main">Lanthanum</span> Chemical element with atomic number 57 (La)

Lanthanum is a chemical element; it has symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between lanthanum and lutetium in the periodic table, of which lanthanum is the first and the prototype. Lanthanum is traditionally counted among the rare earth elements. Like most other rare earth elements, its usual oxidation state is +3, although some compounds are known with an oxidation state of +2. Lanthanum has no biological role in humans but is essential to some bacteria. It is not particularly toxic to humans but does show some antimicrobial activity.

The lanthanide or lanthanoid series of chemical elements comprises at least the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. In the periodic table, they fill the 4f orbitals. Lutetium is also sometimes considered a lanthanide, despite being a d-block element and a transition metal.

<span class="mw-page-title-main">Samarium</span> Chemical element with atomic number 62 (Sm)

Samarium is a chemical element; it has symbol Sm and atomic number 62. It is a moderately hard silvery metal that slowly oxidizes in air. Being a typical member of the lanthanide series, samarium usually has the oxidation state +3. Compounds of samarium(II) are also known, most notably the monoxide SmO, monochalcogenides SmS, SmSe and SmTe, as well as samarium(II) iodide.

<span class="mw-page-title-main">Terbium</span> Chemical element with atomic number 65 (Tb)

Terbium is a chemical element; it has the symbol Tb and atomic number 65. It is a silvery-white, rare earth metal that is malleable and ductile. The ninth member of the lanthanide series, terbium is a fairly electropositive metal that reacts with water, evolving hydrogen gas. Terbium is never found in nature as a free element, but it is contained in many minerals, including cerite, gadolinite, monazite, xenotime and euxenite.

<span class="mw-page-title-main">Thulium</span> Chemical element with atomic number 69 (Tm)

Thulium is a chemical element; it has symbol Tm and atomic number 69. It is the thirteenth element in the lanthanide series of metals. It is the second-least abundant lanthanide in the Earth's crust, after radioactively unstable promethium. It is an easily workable metal with a bright silvery-gray luster. It is fairly soft and slowly tarnishes in air. Despite its high price and rarity, thulium is used as a dopant in solid-state lasers, and as the radiation source in some portable X-ray devices. It has no significant biological role and is not particularly toxic.

<span class="mw-page-title-main">Ytterbium</span> Chemical element with atomic number 70 (Yb)

Ytterbium is a chemical element; it has symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. Like the other lanthanides, its most common oxidation state is +3, as in its oxide, halides, and other compounds. In aqueous solution, like compounds of other late lanthanides, soluble ytterbium compounds form complexes with nine water molecules. Because of its closed-shell electron configuration, its density, melting point and boiling point are much lower than those of most other lanthanides.

<span class="mw-page-title-main">Mischmetal</span> Pyrophoric rare-earth metal alloy

Mischmetal (from German: Mischmetall – "mixed metal") is an alloy of rare-earth elements. It is also called cerium mischmetal, or rare-earth mischmetal. A typical composition includes approximately 55% cerium, 25% lanthanum, and 15~18% neodymium, with traces of other rare earth metals; it contains 95% lanthanides and 5% iron. Its most common use is in the pyrophoric ferrocerium "flint" ignition device of many lighters and torches, although an alloy of only rare-earth elements would be too soft to give good sparks. For this purpose, it is blended with iron oxide and magnesium oxide to form a harder material known as ferrocerium. In chemical formulae it is commonly abbreviated as Mm, e.g. MmNi5.

<span class="mw-page-title-main">Monazite</span> Mineral containing rare-earth elements

Monazite is a primarily reddish-brown phosphate mineral that contains rare-earth elements. Due to variability in composition, monazite is considered a group of minerals. The most common species of the group is monazite-(Ce), that is, the cerium-dominant member of the group. It occurs usually in small isolated crystals. It has a hardness of 5.0 to 5.5 on the Mohs scale of mineral hardness and is relatively dense, about 4.6 to 5.7 g/cm3. There are five different most common species of monazite, depending on the relative amounts of the rare earth elements in the mineral:

<span class="mw-page-title-main">Bastnäsite</span> Family of minerals

The mineral bastnäsite (or bastnaesite) is one of a family of three carbonate-fluoride minerals, which includes bastnäsite-(Ce) with a formula of (Ce, La)CO3F, bastnäsite-(La) with a formula of (La, Ce)CO3F, and bastnäsite-(Y) with a formula of (Y, Ce)CO3F. Some of the bastnäsites contain OH instead of F and receive the name of hydroxylbastnasite. Most bastnäsite is bastnäsite-(Ce), and cerium is by far the most common of the rare earths in this class of minerals. Bastnäsite and the phosphate mineral monazite are the two largest sources of cerium and other rare-earth elements.

<span class="mw-page-title-main">Praseodymium</span> Chemical element with atomic number 59 (Pr)

Praseodymium is a chemical element; it has symbol Pr and the atomic number 59. It is the third member of the lanthanide series and is considered one of the rare-earth metals. It is a soft, silvery, malleable and ductile metal, valued for its magnetic, electrical, chemical, and optical properties. It is too reactive to be found in native form, and pure praseodymium metal slowly develops a green oxide coating when exposed to air.

<span class="mw-page-title-main">Didymium</span> Mixture of praseodymium and neodymium

Didymium is a mixture of the elements praseodymium and neodymium. It is used in safety glasses for glassblowing and blacksmithing and filter lenses for flame testing, especially with a gas (propane)-powered forge, where it provides a filter that selectively blocks the yellowish light at 589 nm emitted by the hot sodium in the glass without having a detrimental effect on general vision, unlike dark welder's glasses and cobalt glasses. The usefulness of didymium glass for eye protection of this sort was discovered by Sir William Crookes.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

<span class="mw-page-title-main">Yttrium</span> Chemical element with atomic number 39 (Y)

Yttrium is a chemical element; it has symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a "rare-earth element". Yttrium is almost always found in combination with lanthanide elements in rare-earth minerals and is never found in nature as a free element. 89Y is the only stable isotope and the only isotope found in the Earth's crust.

<span class="mw-page-title-main">Cerium</span> Chemical element with atomic number 58 (Ce)

Cerium is a chemical element; it has symbol Ce and atomic number 58. It is a soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it often shows the oxidation state of +3 characteristic of the series, it also has a stable +4 state that does not oxidize water. It is considered one of the rare-earth elements. Cerium has no known biological role in humans but is not particularly toxic, except with intense or continued exposure.

<span class="mw-page-title-main">Neodymium(III) acetate</span> Compound of neodymium

Neodymium(III) acetate is an inorganic salt composed of a neodymium atom trication and three acetate groups as anions where neodymium exhibits the +3 oxidation state. It has a chemical formula of Nd(CH3COO)3 although it can be informally referred to as NdAc because Ac is an informal symbol for acetate. It commonly occurs as a light purple powder.

<span class="mw-page-title-main">Neodymium compounds</span> Chemical compounds with at least one neodymium atom

Neodymium compounds are compounds formed by the lanthanide metal neodymium (Nd). In these compounds, neodymium generally exhibits the +3 oxidation state, such as NdCl3, Nd2(SO4)3 and Nd(CH3COO)3. Compounds with neodymium in the +2 oxidation state are also known, such as NdCl2 and NdI2. Some neodymium compounds have colors that vary based upon the type of lighting.

References

  1. "Standard Atomic Weights: Neodymium". CIAAW. 2005.
  2. 1 2 Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  3. 1 2 3 4 5 Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN   978-1-62708-155-9.
  4. 1 2 Yttrium and all lanthanides except Ce and Pm have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see Cloke, F. Geoffrey N. (1993). "Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides". Chem. Soc. Rev. 22: 17–24. doi:10.1039/CS9932200017. and Arnold, Polly L.; Petrukhina, Marina A.; Bochenkov, Vladimir E.; Shabatina, Tatyana I.; Zagorskii, Vyacheslav V.; Cloke (2003-12-15). "Arene complexation of Sm, Eu, Tm and Yb atoms: a variable temperature spectroscopic investigation". Journal of Organometallic Chemistry. 688 (1–2): 49–55. doi:10.1016/j.jorganchem.2003.08.028.
  5. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN   978-0-08-037941-8.
  6. Gschneidner, K. A.; Eyring, L. (1978). Handbook on the Physics and Chemistry of Rare Earths. Amsterdam: North Holland. ISBN   0444850228.
  7. Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN   0-8493-0464-4.
  8. 1 2 3 4 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  9. Werbowy, S., Windholz, L. Studies of Landé gJ-factors of singly ionized neodymium isotopes (142, 143 and 145) at relatively small magnetic fields up to 334 G by collinear laser ion beam spectroscopy. Eur. Phys. J. D 71, 16 (2017). https://doi.org/10.1140/epjd/e2016-70641-3
  10. See Abundances of the elements (data page).
  11. Herbst, J.F.; Croat, J.J. (Nov 1991). "Neodymium-iron-boron permanent magnets". Journal of Magnetism and Magnetic Materials. 100 (1–3): 57–78. Bibcode:1991JMMM..100...57H. doi:10.1016/0304-8853(91)90812-o. ISSN   0304-8853.
  12. 1 2 Gorman, Steve (August 31, 2009) As hybrid cars gobble rare metals, shortage looms, Reuters.
  13. Manutchehr-Danai, Mohsen, ed. (2009), "Neodymium", Dictionary of Gems and Gemology, Berlin, Heidelberg: Springer, p. 598, doi:10.1007/978-3-540-72816-0_15124, ISBN   978-3-540-72816-0 , retrieved 2023-06-09
  14. 1 2 3 4 5 6 7 8 Haynes, William M., ed. (2016). "Neodymium. Elements". CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. p. 4.23. ISBN   9781498754293.
  15. Andrej Szytula; Janusz Leciejewicz (8 March 1994). Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics. CRC Press. p. 1. ISBN   978-0-8493-4261-5.
  16. Zochowski, S W; McEwen, K A; Fawcett, E (1991). "Magnetic phase diagrams of neodymium". Journal of Physics: Condensed Matter. 3 (41): 8079–8094. Bibcode:1991JPCM....3.8079Z. doi:10.1088/0953-8984/3/41/007. ISSN   0953-8984.
  17. Lebech, B; Wolny, J; Moon, R M (1994). "Magnetic phase transitions in double hexagonal close packed neodymium metal-commensurate in two dimensions". Journal of Physics: Condensed Matter. 6 (27): 5201–5222. Bibcode:1994JPCM....6.5201L. doi:10.1088/0953-8984/6/27/029. ISSN   0953-8984.
  18. Kamber, Umut; Bergman, Anders; Eich, Andreas; Iuşan, Diana; Steinbrecher, Manuel; Hauptmann, Nadine; Nordström, Lars; Katsnelson, Mikhail I.; Wegner, Daniel; Eriksson, Olle; Khajetoorians, Alexander A. (2020). "Self-induced spin glass state in elemental and crystalline neodymium". Science. 368 (6494). arXiv: 1907.02295 . doi:10.1126/science.aay6757. ISSN   0036-8075. PMID   32467362.
  19. Stamenov, Plamen (2021), Coey, J. M. D.; Parkin, Stuart S.P. (eds.), "Magnetism of the Elements", Handbook of Magnetism and Magnetic Materials, Cham: Springer International Publishing, pp. 659–692, doi:10.1007/978-3-030-63210-6_15, ISBN   978-3-030-63210-6 , retrieved 2023-06-07
  20. Greenwood & Earnshaw 1997, pp. 1235–8.
  21. 1 2 Neodymium: reactions of elements Archived 2009-05-01 at the Wayback Machine . WebElements. [2017-4-10]
  22. "Chemical reactions of Neodymium". Webelements. Retrieved 2012-08-16.
  23. Burke M.W. (1996) Lighting II: Sources. In: Image Acquisition. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0069-1_2
  24. Greenwood & Earnshaw 1997, pp. 1248–9.
  25. "Standard Atomic Weights: Neodymium". CIAAW. 2005.
  26. Karlewski, T.; Hildebrand, N.; Herrmann, G.; Kaffrell, N.; Trautmann, N.; Brügger, M. (1985). "Decay of the heaviest isotope of neodymium:154Nd". Zeitschrift für Physik a Atoms and Nuclei. 322 (1): 177–178. doi:10.1007/BF01412035. ISSN   0340-2193.
  27. 1 2 Belli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A . 55 (140): 4–6. arXiv: 1908.11458 . Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. S2CID   254103706.
  28. Depaolo, D. J.; Wasserburg, G. J. (1976). "Nd isotopic variations and petrogenetic models" (PDF). Geophysical Research Letters. 3 (5): 249. Bibcode:1976GeoRL...3..249D. doi:10.1029/GL003i005p00249.
  29. Barabash, A.S., Hubert, F., Hubert, P. et al. Double beta decay of 150Nd to the First 0+ excited state of 150Sm. Jetp Lett. 79, 10–12 (2004). https://doi.org/10.1134/1.1675911
  30. Marshall, James L. Marshall; Marshall, Virginia R. Marshall (2016). "Rediscovery of the elements: The Rare Earths–The Last Member" (PDF). The Hexagon: 4–9. Retrieved 30 December 2019.
  31. Emsley 2011, p. 100.
  32. Greenwood & Earnshaw 1997, p. 1424.
  33. Weeks, Mary Elvira (1932). "The Discovery of the Elements: XI. Some Elements Isolated with the Aid of Potassium and Sodium:Zirconium, Titanium, Cerium and Thorium". The Journal of Chemical Education. 9 (7): 1231–1243. Bibcode:1932JChEd...9.1231W. doi:10.1021/ed009p1231.
  34. Weeks, Mary Elvira (1956). The discovery of the elements (6th ed.). Easton, PA: Journal of Chemical Education.
  35. Marshall, James L. Marshall; Marshall, Virginia R. Marshall (2015). "Rediscovery of the elements: The Rare Earths–The Confusing Years" (PDF). The Hexagon: 72–77. Retrieved 30 December 2019.
  36. See:
    • Académie des sciences (France) (1839). Comptes rendus Academie des sciences 0008 (in French). From p. 356: "L'oxide de cérium, extrait de la cérite par la procédé ordinaire, contient à peu près les deux cinquièmes de son poids de l'oxide du nouveau métal qui ne change que peu les propriétés du cérium, et qui s'y tient pour ainsi dire caché. Cette raison a engagé M. Mosander à donner au nouveau métal le nom de Lantane." (The oxide of cerium, extracted from cerite by the usual procedure, contains almost two fifths of its weight in the oxide of the new metal, which differs only slightly from the properties of cerium, and which is held in it so to speak "hidden". This reason motivated Mr. Mosander to give to the new metal the name Lantane).
    • Philosophical Magazine. Taylor & Francis. 1839.
  37. v. Welsbach, Carl Auer (1885). "Die Zerlegung des Didyms in seine Elemente". Monatshefte für Chemie und verwandte Teile anderer Wissenschaften. 6 (1): 477–491. doi:10.1007/BF01554643. S2CID   95838770.
  38. Krishnamurthy, N.; Gupta, C. K. (2004). Extractive Metallurgy of Rare Earths. CRC Press. p. 6. ISBN   978-0-203-41302-9.
  39. 1 2 3 Emsley, John (2003). Nature's building blocks: an A–Z guide to the elements . Oxford University Press. pp.  268–270. ISBN   0-19-850340-7.
  40. Weeks, Mary Elvira (1932). "The discovery of the elements. XVI. The rare earth elements". Journal of Chemical Education. 9 (10): 1751. Bibcode:1932JChEd...9.1751W. doi:10.1021/ed009p1751.
  41. Cotton, Simon A. (2021), Giunta, Carmen J.; Mainz, Vera V.; Girolami, Gregory S. (eds.), "The Rare Earths, a Challenge to Mendeleev, No Less Today", 150 Years of the Periodic Table: A Commemorative Symposium, Perspectives on the History of Chemistry, Cham: Springer International Publishing, pp. 259–301, doi:10.1007/978-3-030-67910-1_11, ISBN   978-3-030-67910-1, S2CID   238942033 , retrieved 2023-06-07
  42. Hudson Institute of Mineralogy (1993–2018). "Mindat.org".
  43. 1 2 Greenwood & Earnshaw 1997, pp. 1229–32.
  44. 1 2 3 4 Lodders 2003, pp. 1222–1223.
  45. 1 2 Abundance of elements in the earth’s crust and in the sea, CRC Handbook of Chemistry and Physics, 97th edition (2016–2017), p. 14-17
  46. "Rare Earths Statistics and Information | U.S. Geological Survey" (PDF). minerals.usgs.gov. Archived from the original (PDF) on 2016-05-06. Retrieved 2023-06-07.
  47. "Honda co-develops first hybrid car motor free of heavy rare earth metals". Reuters. 12 July 2016.
  48. "Honda's Heavy Rare Earth-Free Hybrid Motors Sidestep China". Bloomberg.com. 12 July 2016.
  49. "Greenland to hold election watched closely by global mining industry". Reuters. 2021-03-31. Retrieved 2023-06-07.
  50. Buzhinskii, I. M.; Mamonov, S. K.; Mikhailova, L. I. (1971-08-01). "Influence of specific neodymium-glass absorption bands on generating energy". Journal of Applied Spectroscopy. 15 (2): 1002–1005. Bibcode:1971JApSp..15.1002B. doi:10.1007/BF00607297. ISSN   1573-8647. S2CID   95996476.
  51. Sagawa M, Fujimura S, Togawa N, Yamamoto H, Matsuura Y (1984) New material for permanent magnets on a base of Nd and Fe. J Appl Phys 55(6):2083–2087. https://doi.org/10.1063/1.333572
  52. 1 2 3 Yang, Yongxiang; Walton, Allan; Sheridan, Richard; Güth, Konrad; Gauß, Roland; Gutfleisch, Oliver; Buchert, Matthias; Steenari, Britt-Marie; Van Gerven, Tom; Jones, Peter Tom; Binnemans, Koen (2017-03-01). "REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review". Journal of Sustainable Metallurgy. 3 (1): 122–149. Bibcode:2017JSusM...3..122Y. doi: 10.1007/s40831-016-0090-4 . ISSN   2199-3831.
  53. Zhang, W., Liu, G. & Han, K. The Fe-Nd (Iron-Neodymium) system. JPE 13, 645–648 (1992). https://doi.org/10.1007/BF02667216
  54. Bala, H.; Szymura, S.; Pawłowska, G.; Rabinovich, Yu. M. (1993-10-01). "Effect of impurities on the corrosion behaviour of neodymium". Journal of Applied Electrochemistry. 23 (10): 1017–1024. doi:10.1007/BF00266123. ISSN   1572-8838. S2CID   95479959.
  55. Hopp, M.; Rogaschewski, S.; Groth, Th. (2003-04-01). "Testing the cytotoxicity of metal alloys used as magnetic prosthetic devices". Journal of Materials Science: Materials in Medicine. 14 (4): 335–345. doi:10.1023/A:1022931915709. ISSN   1573-4838. PMID   15348458. S2CID   36896100.
  56. Marchio, Cathy (Apr 16, 2024). "Application of Neodymium Magnets in Wind Turbine Generators". Stanford Magnets. Retrieved Aug 16, 2024.
  57. Kondrukevich, A. A.; Vlasov, A. S.; Platov, Yu. T.; Rusovich-Yugai, N. S.; Gorbatov, E. P. (2008-05-01). "Color of porcelain containing neodymium oxide". Glass and Ceramics. 65 (5): 203–207. doi:10.1007/s10717-008-9039-9. ISSN   1573-8515. S2CID   137474301.
  58. "Chameleon Glass Changes Color". Archived from the original on 2008-04-03. Retrieved 2009-06-06.
  59. Brown D.C. (1981) Optical-Pump Sources for Nd : Glass Lasers. In: High-Peak-Power Nd: Glass Laser Systems. Springer Series in Optical Sciences, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38508-0_3
  60. Bray, Charles (2001). Dictionary of glass: materials and techniques . University of Pennsylvania Press. p.  102. ISBN   0-8122-3619-X.
  61. Baader Neodymium Filter, First Light Optics.
  62. Peelman, S.; Sietsma, J.; Yang, Y. (2018-06-01). "Recovery of Neodymium as (Na, Nd)(SO4)2 from the Ferrous Fraction of a General WEEE Shredder Stream". Journal of Sustainable Metallurgy. 4 (2): 276–287. Bibcode:2018JSusM...4..276P. doi: 10.1007/s40831-018-0165-5 . ISSN   2199-3831.
  63. Zhang, Liqiang; Lin, Hang; Cheng, Yao; Xu, Ju; Xiang, Xiaoqiang; Wang, Congyong; Lin, Shisheng; Wang, Yuansheng (August 2019). "Color-filtered phosphor-in-glass for LED-lit LCD with wide color gamut". Ceramics International. 45 (11): 14432–14438. doi:10.1016/j.ceramint.2019.04.164. S2CID   149699364.
  64. Fontani, Marco; Costa, Mariagrazia; Orna, Mary Virginia (2015). The Lost Elements: The Periodic Table's Shadow Side. Oxford University Press. pp. 172–173. ISBN   978-0-19-938334-4.
  65. Sulc, Jan; Jelinkova, Helena; Jabczynski, Jan K.; Zendzian, Waldemar; Kwiatkowski, Jacek; Nejezchleb, Karel; Skoda, Vaclav (27 April 2005). "Comparison of diode-side-pumped triangular Nd:YAG and Nd:YAP laser" (PDF). In Hoffman, Hanna J; Shori, Ramesh K (eds.). Solid State Lasers XIV: Technology and Devices. Vol. 5707. p. 325. doi:10.1117/12.588233. S2CID   121802212 . Retrieved 16 February 2022.
  66. Tanjib Atique Khan (2012-06-27). "Solid State Laser & Semiconductor Laser" (PDF).
  67. Johnson, L. F.; Boyd, G. D.; Nassau, K.; Soden, R. R. (1962). "Continuous operation of a solid-state optical maser". Physical Review. 126 (4): 1406. Bibcode:1962PhRv..126.1406J. doi:10.1103/PhysRev.126.1406.
  68. Geusic, J. E.; Marcos, H. M.; Van Uitert, L. G. (1964). "Laser oscillations in nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets". Applied Physics Letters. 4 (10): 182. Bibcode:1964ApPhL...4..182G. doi:10.1063/1.1753928.
  69. Koechner, 1999; Powell, 1998; Svelto, 1998; Siegman, 1986
  70. Norman, M. J.; Andrew, J. E.; Bett, T. H.; Clifford, R. K.; et al. (2002). "Multipass Reconfiguration of the HELEN Nd:Glass Laser at the Atomic Weapons Establishment". Applied Optics. 41 (18): 3497–505. Bibcode:2002ApOpt..41.3497N. doi:10.1364/AO.41.003497. PMID   12078672.
  71. Wang, W.; Wang, J.; Wang, F.; Feng, B.; Li, K.; Jia, H.; Han, W.; Xiang, Y.; Li, F.; Wang, L.; Zhong, W.; Zhang, X.; Zhao, S. (2010-10-01). "Third harmonic generation of Nd:glass laser with novel composite deuterated KDP crystals". Laser Physics. 20 (10): 1923–1926. Bibcode:2010LaPhy..20.1923W. doi:10.1134/S1054660X10190175. ISSN   1555-6611. S2CID   123703318.
  72. Osborne, M. G.; Anderson, I. E.; Gschneidner, K. A.; Gailloux, M. J.; Ellis, T. W. (1994), Reed, Richard P.; Fickett, Fred R.; Summers, Leonard T.; Stieg, M. (eds.), "Centrifugal Atomization of Neodymium and Er3Ni Regenerator Particulate", Advances in Cryogenic Engineering Materials: Volume 40, Part A, An International Cryogenic Materials Conference Publication, Boston, MA: Springer US, pp. 631–638, doi:10.1007/978-1-4757-9053-5_80, ISBN   978-1-4757-9053-5 , retrieved 2023-06-07
  73. Kuipers, Jeroen; Giepmans, Ben N. G. (2020-04-01). "Neodymium as an alternative contrast for uranium in electron microscopy". Histochemistry and Cell Biology. 153 (4): 271–277. doi:10.1007/s00418-020-01846-0. ISSN   1432-119X. PMC   7160090 . PMID   32008069.
  74. Wei, Y. and Zhou, X. (1999). "The Effect of Neodymium (Nd3+) on Some Physiological Activities in Oilseed Rape during Calcium (Ca2+) Starvation". 10th International Rapeseed Congress. 2: 399.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  75. Tommasi, Franca; Thomas, Philippe J.; Pagano, Giovanni; Perono, Genevieve A.; Oral, Rahime; Lyons, Daniel M.; Toscanesi, Maria; Trifuoggi, Marco (2021-11-01). "Review of Rare Earth Elements as Fertilizers and Feed Additives: A Knowledge Gap Analysis". Archives of Environmental Contamination and Toxicology. 81 (4): 531–540. Bibcode:2021ArECT..81..531T. doi:10.1007/s00244-020-00773-4. ISSN   1432-0703. PMC   8558174 . PMID   33141264.
  76. "Team finds Earth's 'oldest rocks'". BBC News. London. 2008-09-26. Retrieved 2009-06-06.
  77. Carlson, Richard W. (2013), "Sm–Nd Dating", in Rink, W. Jack; Thompson, Jeroen (eds.), Encyclopedia of Scientific Dating Methods, Dordrecht: Springer Netherlands, pp. 1–20, doi:10.1007/978-94-007-6326-5_84-1, ISBN   978-94-007-6326-5 , retrieved 2023-06-07
  78. Tachikawa, K. (2003). "Neodymium budget in the modern ocean and paleo-oceanographic implications". Journal of Geophysical Research. 108 (C8): 3254. Bibcode:2003JGRC..108.3254T. doi: 10.1029/1999JC000285 .
  79. van de Flierdt, Tina; Griffiths, Alexander M.; Lambelet, Myriam; Little, Susan H.; Stichel, Torben; Wilson, David J. (2016-11-28). "Neodymium in the oceans: a global database, a regional comparison and implications for palaeoceanographic research". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 374 (2081): 20150293. Bibcode:2016RSPTA.37450293V. doi:10.1098/rsta.2015.0293. PMC   5069528 . PMID   29035258.
  80. "Neodymium 261157". Sigma-Aldrich.
  81. Pol, Arjan; Barends, Thomas R. M.; Dietl, Andreas; Khadem, Ahmad F.; Eygensteyn, Jelle; Jetten, Mike S. M.; Op Den Camp, Huub J. M. (2013). "Rare earth metals are essential for methanotrophic life in volcanic mudpots" (PDF). Environmental Microbiology. 16 (1): 255–64. Bibcode:2014EnvMi..16..255P. doi:10.1111/1462-2920.12249. PMID   24034209.
  82. Kang, Lin; Shen, Zhiqiang; Jin, Chengzhi (2000-04-01). "Neodymium cations Nd3+ were transported to the interior ofEuglena gracilis 277". Chinese Science Bulletin. 45 (7): 585–592. Bibcode:2000ChSBu..45..585K. doi:10.1007/BF02886032. ISSN   1861-9541. S2CID   95983365.
  83. Vais, Vladimir; Li, Chunsheng; Cornett, Jack (2003-09-01). "Condensation reaction in the bandpass reaction cell improves sensitivity for uranium, thorium, neodymium and praseodymium measurements". Analytical and Bioanalytical Chemistry. 377 (1): 85–88. doi:10.1007/s00216-003-2084-x. ISSN   1618-2650. PMID   12856100. S2CID   11330034.
  84. "Neodymium (Nd) - Chemical properties, Health and Environmental effects".
  85. Donohue, V. E.; McDonald, Fraser; Evans, R. (Mar 1995). "In vitro cytotoxicity testing of neodymium-iron-boron magnets". Journal of Applied Biomaterials. 6 (1): 69–74. doi:10.1002/jab.770060110. ISSN   1045-4861. PMID   7703540.
  86. Swain, Frank (March 6, 2009). "How to remove a finger with two super magnets". Seed Media Group LLC. Retrieved 2013-03-31.
  87. 1 2 Abrams, Rachel (July 17, 2014). "After Two-Year Fight, Consumer Agency Orders Recall of Buckyballs". New York Times. Retrieved 2014-07-21.
  88. Balistreri, William F. (2014). "Neodymium Magnets: Too Attractive?". Medscape Gastroenterology.

Bibliography