Isotopes of neodymium

Last updated

Isotopes of neodymium  (60Nd)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
142Nd27.2% stable
143Nd12.2%stable
144Nd23.8%2.29×1015 yα 140Ce
145Nd8.3%stable
146Nd17.2%stable
148Nd5.80%stable
150Nd5.60%9.3×1018 y [1] ββ 150Sm
Standard atomic weight Ar°(Nd)

Naturally occurring neodymium (60Nd) is composed of five stable isotopes, 142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2% natural abundance), and two long-lived radioisotopes, 144Nd and 150Nd. In all, 35 radioisotopes of neodymium have been characterized up to now, with the most stable being naturally occurring isotopes 144Nd (alpha decay, a half-life (t1/2) of 2.29×1015 years) and 150Nd (double beta decay, t1/2 of 9.3×1018 years), and for practical purposes they can be considered to be stable as well. All of the remaining radioactive isotopes have half-lives that are less than 11 days, and the majority of these have half-lives that are less than 70 seconds; the most stable artificial isotope is 147Nd with a half-life of 10.98 days. This element also has 15 known meta states with the most stable being 139mNd (t1/2 5.5 hours), 135mNd (t1/2 5.5 minutes) and 133m1Nd (t1/2 ~70 seconds).

Contents

The primary decay modes for isotopes lighter than the most abundant stable isotope (also the only theoretically stable isotope), 142Nd, are electron capture and positron decay, and the primary mode for heavier radioisotopes is beta decay. The primary decay products for lighter radioisotopes are praseodymium isotopes and the primary products for heavier ones are promethium isotopes.

Neodymium isotopes as fission products

Neodymium is one of the more common fission products that results from the splitting of uranium-233, uranium-235, plutonium-239 and plutonium-241. The distribution of resulting neodymium isotopes is distinctly different than those found in crustal rock formation on Earth. One of the methods used to verify that the Oklo Fossil Reactors in Gabon had produced a natural nuclear fission reactor some two billion years before present was to compare the relative abundances of neodymium isotopes found at the reactor site with those found elsewhere on Earth. [4] [5] [6]

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [7]
[n 2] [n 3]
Half-life [1]
[n 4] [n 5]
Decay
mode
[1]
[n 6]
Daughter
isotope

[n 7]
Spin and
parity [1]
[n 8] [n 5]
Natural abundance (mole fraction)
Excitation energy [n 5] Normal proportion [1] Range of variation
125Nd6065124.94840(43)#0.65(15) s β+ 125Pr(5/2)(+#)
β+, p (?%)124Ce
126Nd6066125.94269(32)#1# s
[>200 ns]
0+
127Nd6067126.93998(32)#1.8(4) sβ+127Pr5/2+#
β+, p (?%)126Ce
128Nd6068127.93502(22)#5# s0+
129Nd6069128.93304(22)#6.8(6) sβ+129Pr7/2− [8]
β+, p (?%)128Ce
129m1Nd17 keV [8] 2.6(4) sβ+129Pr1/2+ [8]
β+, p (?%)128Ce
129m2Nd [8] 39 keV2.6(4) sβ+129Pr3/2+
β+, p (?%)128Ce
129m3Nd [8] 108 keV IT (?%)129m2Nd5/2+
IT (?%)129Nd
129m4Nd [8] 1893 keVIT129Nd(17/2+)
129m5Nd [8] 2109 keVIT129Nd(19/2+)
129m6Nd [8] 2284 keV0.48(4) μsIT129Nd(21/2+)
130Nd6070129.928506(30)21(3) sβ+130Pr0+
131Nd6071130.927248(30)25.4(9) sβ+131Pr(5/2+)
β+, p (?%)130Ce
132Nd6072131.923321(26)1.56(10) minβ+132Pr0+
133Nd6073132.922348(50)70(10) sβ+133Pr(7/2+)
133m1Nd127.97(12) keV~70 sβ+ (?%)133Pr(1/2)+
IT (?%)133Nd
133m2Nd176.10(10) keV301(18) nsIT133Nd(9/2–)
134Nd6074133.918790(13)8.5(15) minβ+134Pr0+
134mNd2293.0(4) keV389(17) μsIT134Nd8–
135Nd6075134.918181(21)12.4(6) minβ+135Pr9/2–
135mNd64.95(24) keV5.5(5) minβ+135Pr(1/2+)
136Nd6076135.914976(13)50.65(33) minβ+136Pr0+
137Nd6077136.914563(13)38.5(15) minβ+137Pr1/2+
137mNd519.43(20) keV1.60(15) sIT137Nd11/2–
138Nd6078137.911951(12)5.04(9) hβ+138Pr0+
138mNd3174.5(4) keV370(5) nsIT138Nd10+
139Nd6079138.911951(30)29.7(5) minβ+139Pr3/2+
139m1Nd231.16(5) keV5.50(20) hβ+ (87.0%)139Pr11/2–
IT (13.0%)139Nd
139m2Nd2616.9(6) keV276.8(18) nsIT139Nd23/2
140Nd6080139.9095461(35)3.37(2) d EC 140Pr0+
140m1Nd2221.65(9) keV600(50) μsIT140Nd7–
140m2Nd7435.1(4) keV1.22(6) μsIT140Nd20+
141Nd6081140.9096167(34)2.49(3) hEC (97.28%)141Pr3/2+
β+ (2.72%)
141mNd756.51(5) keV62.0(8) sIT (99.97%)141Nd11/2–
β+ (0.032%)141Pr
142Nd6082141.9077288(13)Stable0+0.27153(40)
143Nd [n 9] 6083142.9098198(13) Observationally Stable [n 10] 7/2−0.12173(26)
144Nd [n 9] [n 11] 6084143.9100928(13)2.29(16)×1015 y α 140Ce0+0.23798(19)
145Nd [n 9] 6085144.9125792(14)Observationally Stable [n 12] 7/2−0.08293(12)
146Nd [n 9] 6086145.9131225(14)Observationally Stable [n 13] 0+0.17189(32)
147Nd [n 9] 6087146.9161060(14)10.98(1) dβ147Pm5/2−
148Nd [n 9] 6088147.9168990(22)Observationally Stable [n 14] 0+0.05756(21)
149Nd [n 9] 6089148.9201546(22)1.728(1) hβ149Pm5/2−
150Nd [n 9] [n 11] 6090149.9209013(12)9.3(7)×1018 yββ150Sm0+0.05638(28)
151Nd6091150.9238394(12)12.44(7) minβ151Pm3/2+
152Nd6092151.924691(26)11.4(2) minβ152Pm0+
153Nd6093152.9277179(29)31.6(10) sβ153Pm(3/2)−
153mNd191.71(16) keV1.10(4) μsIT153Nd(5/2)+
154Nd6094153.9295974(11)25.9(2) sβ154Pm0+
154mNd1297.9(4) keV3.2(3) μsIT154Nd(4−)
155Nd6095154.9331356(98)8.9(2) sβ155Pm(3/2−)
156Nd6096155.9353704(14)5.06(13) sβ156Pm0+
156mNd1431.3(4) keV365(145) nsIT156Nd5−
157Nd6097156.9393511(23)1.17(4) s [12] β157Pm5/2−#
158Nd6098157.9422056(14)810(30) msβ158Pm0+
158mNd1648.1(14) keV339(20) nsIT158Nd(6−)
159Nd6099158.946619(32)500(30) msβ159Pm7/2+#
160Nd60100159.949839(50)439(37) msβ160Pm0+
160mNd1107.9(9) keV1.63(21) μsIT160Nd(4−)
161Nd60101160.95466(43)#215(76) msβ161Pm1/2−#
162Nd60102161.95812(43)#310(200) msβ162Pm0+
163Nd60103162.96341(54)#80# ms
[>550 ns]
5/2−#
This table header & footer:
  1. mNd  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life  nearly stable, half-life longer than age of universe.
  5. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    p: Proton emission
  7. Bold symbol as daughter  Daughter product is stable.
  8. () spin value  Indicates spin with weak assignment arguments.
  9. 1 2 3 4 5 6 7 8 Fission product
  10. Believed to undergo α decay to 139Ce with a half-life over 1.1×1020 years [9] [10]
  11. 1 2 Primordial radionuclide
  12. Believed to undergo α decay to 141Ce with a half-life of over 6.1×1019 years [11] [10]
  13. Believed to undergo ββ decay to 146Sm, or α decay to 142Ce with a half-life of over 3.3×1021 years [11] [10]
  14. Believed to undergo ββ decay to 148Sm with a half-life over 3×1018 years, or α decay to 144Ce with a half-life of over 1.2×1019 years [11] [10]

See also

Daughter products other than neodymium

References

  1. 1 2 3 4 5 6 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Neodymium". CIAAW. 2005.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Hemond, C.; Menet, C.; Menager, M.T. (1991). "U and Nd Isotopes from the New Oklo Reactor 10 (GABON): Evidence for Radioelements Migration" . MRS Proceedings. 257. doi:10.1557/PROC-257-489.
  5. "Oklo's Natural Nuclear Reactors". 24 October 2020.
  6. "The Implications of the Oklo Phenomenon on the Constancy of Radiometric Decay Rates".
  7. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  8. 1 2 3 4 5 6 7 8 Petrache, C. M.; Uusitalo, J.; Briscoe, A. D.; Sullivan, C. M.; Joss, D. T.; Tann, H.; Aktas, ö.; Alayed, B.; Al-Aqeel, M. A. M.; Astier, A.; Badran, H.; Cederwall, B.; Delafosse, C.; Ertoprak, A.; Favier, Z.; Forsberg, U.; Gins, W.; Grahn, T.; Greenlees, P. T.; He, X. T.; Heery, J.; Hilton, J.; Kalantan, S.; Li, R.; Jodidar, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Lewis, M. C.; Li, J. G.; Li, Z. P.; Luoma, M.; Lv, B. F.; McCarter, A.; Nathaniel, S.; Ojala, J.; Page, R. D.; Pakarinen, J.; Papadakis, P.; Parr, E.; Partanen, J.; Paul, E. S.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Smallcombe, J.; Sorri, J.; Szwec, S.; Wang, L. J.; Wang, Y.; Waring, L.; Xu, F. R.; Zhang, J.; Zhang, Z. H.; Zheng, K. K.; Zimba, G. (19 July 2023). "High- K three-quasiparticle isomers in the proton-rich nucleus Nd 129" (PDF). Physical Review C. 108 (1). doi:10.1103/PhysRevC.108.014317.
  9. Belli, P.; Bernabei, R.; Boiko, R. S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Kasperovych, D. V.; Kobychev, V. V.; Laubenstein, M.; Leoncini, A.; Merlo, V.; Poda, D. V.; Polischuk, O. G.; Sokur, N. V.; Tretyak, V. I. (1 March 2024). "Search for alpha and double alpha decays of natural Nd isotopes accompanied by gamma quanta" . European Physical Journal A. 60 (46). doi:10.1140/epja/s10050-024-01260-3.
  10. 1 2 3 4 Belli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A . 55 (140): 4–6. arXiv: 1908.11458 . Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. S2CID   201664098.
  11. 1 2 3 Sokur, N.V.; Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.V.; Kobychev, V.V.; Laubenstein, M.; Leoncini, A.; Merlo, V.; Polischuk, O.G.; Tretyak, V.I. (11 July 2023). Alpha decay of naturally occurring neodymium isotopes. XII International Conference on New Frontiers in Physics.
  12. Hartley, D. J.; Kondev, F. G.; Carpenter, M. P.; Clark, J. A.; Copp, P.; Kay, B.; Lauritsen, T.; Savard, G.; Seweryniak, D.; Wilson, G. L.; Wu, J. (2023-08-14). "First β-decay spectroscopy study of 157Nd". Physical Review C. 108 (2). American Physical Society (APS): 024307. Bibcode:2023PhRvC.108b4307H. doi:10.1103/physrevc.108.024307. ISSN   2469-9985. S2CID   260913513.