Isotopes of strontium

Last updated

Isotopes of strontium  (38Sr)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
82Sr synth 25.36 d ε 82Rb
83Srsynth1.35 dε 83Rb
β+ 83Rb
γ
84Sr0.56% stable
85Srsynth64.84 dε 85Rb
γ
86Sr9.86%stable
87Sr7%stable
88Sr82.6%stable
89Sr synth50.52 d β 89Y
90Sr trace 28.90 yβ 90Y
Standard atomic weight Ar°(Sr)

The alkaline earth metal strontium (38Sr) has four stable, naturally occurring isotopes: 84Sr (0.56%), 86Sr (9.86%), 87Sr (7.0%) and 88Sr (82.58%). Its standard atomic weight is 87.62(1).

Only 87Sr is radiogenic; it is produced by decay from the radioactive alkali metal 87 Rb, which has a half-life of 4.88 × 1010 years (i.e. more than three times longer than the current age of the universe). Thus, there are two sources of 87Sr in any material: primordial, formed during nucleosynthesis along with 84Sr, 86Sr and 88Sr; and that formed by radioactive decay of 87Rb. The ratio 87Sr/86Sr is the parameter typically reported in geologic investigations; [4] ratios in minerals and rocks have values ranging from about 0.7 to greater than 4.0 (see rubidium–strontium dating). Because strontium has an electron configuration similar to that of calcium, it readily substitutes for calcium in minerals.

In addition to the four stable isotopes, thirty-two unstable isotopes of strontium are known to exist, ranging from 73Sr to 108Sr. Radioactive isotopes of strontium primarily decay into the neighbouring elements yttrium (89Sr and heavier isotopes, via beta minus decay) and rubidium (85Sr, 83Sr and lighter isotopes, via positron emission or electron capture). The longest-lived of these isotopes, and the most relevantly studied, are 90Sr with a half-life of 28.9 years, 85Sr with a half-life of 64.853 days, and 89Sr (89Sr) with a half-life of 50.57 days. All other strontium isotopes have half-lives shorter than 50 days, most under 100 minutes.

Strontium-89 is an artificial radioisotope used in treatment of bone cancer; [5] this application utilizes its chemical similarity to calcium, which allows it to substitute calcium in bone structures. In circumstances where cancer patients have widespread and painful bony metastases, the administration of 89Sr results in the delivery of beta particles directly to the cancerous portions of the bone, where calcium turnover is greatest. Strontium-90 is a by-product of nuclear fission, present in nuclear fallout. The 1986 Chernobyl nuclear accident contaminated a vast area with 90Sr. [6] It causes health problems, as it substitutes for calcium in bone, preventing expulsion from the body. Because it is a long-lived high-energy beta emitter, it is used in SNAP (Systems for Nuclear Auxiliary Power) devices. These devices hold promise for use in spacecraft, remote weather stations, navigational buoys, etc., where a lightweight, long-lived, nuclear-electric power source is required.

In 2020, researchers have found that mirror nuclides 73Sr and 73Br were found to not behave identically to each other as expected. [7]

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [8]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6] [n 7]
Spin and
parity [1]
[n 8] [n 4]
Natural abundance (mole fraction)
Excitation energyNormal proportion [1] Range of variation
73Sr383572.96570(43)#25.3(14) ms β+, p (63%)72Kr(5/2−)
β+ (37%)73Rb
74Sr383673.95617(11)#27.6(26) msβ+74Rb0+
75Sr383774.94995(24)85.2(23) msβ+ (94.8%)75Rb(3/2−)
β+, p (5.2%)74Kr
76Sr383875.941763(37)7.89(7) sβ+76Rb0+
β+, p (0.0034%)75Kr
77Sr383976.9379455(85)9.0(2) sβ+ (99.92%)77Rb5/2+
β+, p (0.08%)76Kr
78Sr384077.9321800(80)156.1(27) sβ+78Rb0+
79Sr384178.9297047(80)2.25(10) minβ+79Rb3/2−
80Sr384279.9245175(37)106.3(15) minβ+80Rb0+
81Sr384380.9232114(34)22.3(4) minβ+81Rb1/2−
81m1Sr79.23(4) keV390(50) ns IT 81Sr(5/2)−
81m2Sr89.05(7) keV6.4(5) μs(7/2+)
82Sr384481.9183998(64)25.35(3) d EC 82Rb0+
83Sr384582.9175544(73)32.41(3) hβ+83Rb7/2+
83mSr259.15(9) keV4.95(12) sIT83Sr1/2−
84Sr384683.9134191(13) Observationally Stable [n 9] 0+0.0056(2)
85Sr384784.9129320(30)64.846(6) dEC85Rb9/2+
85mSr238.79(5) keV67.63(4) minIT (86.6%)85Sr1/2−
β+ (13.4%)85Rb
86Sr384885.9092607247(56)Stable0+0.0986(20)
86mSr2956.09(12) keV455(7) nsIT86Sr8+
87Sr [n 10] 384986.9088774945(55)Stable9/2+0.0700(20)
87mSr388.5287(23) keV2.805(9) hIT (99.70%)87Sr1/2−
EC (0.30%)87Rb
88Sr [n 11] 385087.905612253(6)Stable0+0.8258(35)
89Sr [n 11] 385188.907450808(98)50.563(25) dβ89Y5/2+
90Sr [n 11] 385289.9077279(16)28.91(3) yβ90Y0+
91Sr385390.9101959(59)9.65(6) hβ91Y5/2+
92Sr385491.9110382(37)2.611(17) hβ92Y0+
93Sr385592.9140243(81)7.43(3) minβ93Y5/2+
94Sr385693.9153556(18)75.3(2) sβ94Y0+
95Sr385794.9193583(62)23.90(14) sβ95Y1/2+
96Sr385895.9217190(91)1.059(8) sβ96Y0+
97Sr385996.9263756(36)432(4) msβ (99.98%)97Y1/2+
β, n (0.02%)96Y
97m1Sr308.13(11) keV175.2(21) nsIT97Sr7/2+
97m2Sr830.83(23) keV513(5) nsIT97Sr(9/2+)
98Sr386097.9286926(35)653(2) msβ (99.77%)98Y0+
β, n (0.23%)97Y
99Sr386198.9328836(51)269.2(10) msβ (99.90%)99Y3/2+
β, n (0.100%)98Y
100Sr386299.9357833(74)202.1(17) msβ (98.89%)100Y0+
β, n (1.11%)99Y
100mSr1618.72(20) keV122(9) nsIT100Sr(4−)
101Sr3863100.9406063(91)113.7(17) msβ (97.25%)101Y(5/2−)
β, n (2.75%)100Y
102Sr3864101.944005(72)69(6) msβ (94.5%)102Y0+
β, n (5.5%)101Y
103Sr3865102.94924(22)#53(10) msβ103Y5/2+#
104Sr3866103.95302(32)#50.6(42) msβ104Y0+
105Sr3867104.95900(54)#39(5) msβ105Y5/2+#
106Sr3868105.96318(64)#21(8) msβ106Y0+
107Sr3869106.96967(75)#25# ms
[>400 ns]
1/2+#
108Sr [9] 3870
This table header & footer:
  1. mSr  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold italics symbol as daughter  Daughter product is nearly stable.
  7. Bold symbol as daughter  Daughter product is stable.
  8. () spin value  Indicates spin with weak assignment arguments.
  9. Believed to decay by β+β+ to 84Kr
  10. Used in rubidium–strontium dating
  11. 1 2 3 Fission product

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Strontium". CIAAW. 1969.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Dickin, Alan P. (2018). Radiogenic Isotope Geology (3 ed.). Cambridge: Cambridge University Press. ISBN   978-1-107-09944-9.
  5. Reddy, Eashwer K.; Robinson, Ralph G.; Mansfield, Carl M. (January 1986). "Strontium 89 for Palliation of Bone Metastases". Journal of the National Medical Association. 78 (1): 27–32. ISSN   0027-9684. PMC   2571189 . PMID   2419578.
  6. Wilken, R.D.; Diehl, R. (1987). "Strontium-90 in environmental samples from Northern Germany before and after the Chernobyl accident". Radiochimica Acta. 41 (4): 157–162. doi:10.1524/ract.1987.41.4.157. S2CID   99369165.
  7. "Discovery by UMass Lowell-led team challenges nuclear theory". Space Daily. Retrieved 2022-06-26.
  8. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  9. Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of 110Zr". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl: 10261/260248 . S2CID   234019083.