Rubidium-82

Last updated
Rubidium-82, 82Rb
General
Symbol 82Rb
Names rubidium-82, 82Rb, Rb-82
Protons (Z)37
Neutrons (N)45
Nuclide data
Half-life (t1/2)1.2575 min
Isotope mass 81.9182098 Da
Spin +1
Parent isotopes 82Sr
Decay products 82Kr
Decay modes
Decay mode Decay energy (MeV)
Isotopes of rubidium
Complete table of nuclides

Rubidium-82 (82Rb) is a radioactive isotope of rubidium. 82Rb is widely used in myocardial perfusion imaging. This isotope undergoes rapid uptake by myocardiocytes, which makes it a valuable tool for identifying myocardial ischemia in Positron Emission Tomography (PET) imaging. 82Rb is used in the pharmaceutical industry and is marketed as Rubidium-82 chloride under the trade names RUBY-FILL and CardioGen-82.

Contents

History

In 1953, it was discovered that rubidium carried a biological activity that was comparable to potassium. [1] In 1959, preclinical trials showed in dogs that myocardial uptake of this radionuclide was directly proportional to myocardial blood flow. [2] In 1979, Yano et al. compared several ion-exchange columns to be used in an automated 82Sr/82Rb generator for clinical testing. [3] Around 1980, pre-clinical trials began using 82Rb in PET. In 1982, Selwyn et al. examined the relation between myocardial perfusion and rubidium-82 uptake during acute ischemia in six dogs after coronary stenosis and in five volunteers and five patients with coronary artery disease. [4] Myocardial tomograms, recorded at rest and after exercise in the volunteers showed homogeneous uptake in reproducible and repeatable scans. Rubidium-82 has shown considerable accuracy, comparable to that of 99m Tc-SPECT. [5] [6] In 1989, the FDA approved the 82Rb/82Sr generator for commercial use in the U.S. [7] With increased 82Sr production capabilities, the use of 82Rb has increased over the last 10 years and is now approved by several health authorities worldwide.

Production

The decay of Rubidium-82, which undergoes positron emission. Rb-82 Decay.png
The decay of Rubidium-82, which undergoes positron emission.

Rubidium-82 is produced by electron capture of its parent nucleus, strontium-82. The generator contains accelerator produced 82Sr adsorbed on stannic oxide in a lead-shielded column and provides a means for obtaining sterile nonpyrogenic solutions of rubidium chloride (halide salt form capable of injection). The amount (millicuries) of 82Rb obtained in each elution will depend on the potency of the generator. When eluted at a rate of 50 mL/minute, each generator eluate at the end of elution should not contain more than 0.02 microcuries of strontium 82Sr and not more than 0.2 microcuries of 85Sr per millicurie of 82RbCl injection, and not more than 1 microgram of tin per mL of eluate. [8]

Pharmacology

Mechanism of action

82Rb has activity very similar to that of a potassium ion (K+). Once in the myocardium, it is an active participant in the sodium-potassium exchange pump of cells. It is rapidly extracted by the myocardium proportional to blood flow. Its radioactivity is increased in viable myocardial cells reflecting cellular retention, while the tracer is cleared rapidly from necrotic or infarcted tissue. [8]

Pharmacodynamics

When tested clinically, 82Rb is seen in the myocardium within the first minute of intravenous injection. When the myocardium is affected with ischemia or infarction, they will be visualized between 2–7 minutes. These affected areas will be shown as photon deficient on the PET scan. 82Rb passes through the entire body on the first pass of circulation and has visible uptake in organs such as the kidney, liver, spleen and lung. This is due to the high vascularity of those organs. [8]

Use in PET

Rubidium is rapidly extracted from the blood and is taken up by the myocardium in relation to myocardial perfusion, which requires energy for myocardial uptake through Na+/K+-ATPase similar to thallium-201. 82Rb is capable of producing a clear perfusion image similar to single photon emission computed tomography(SPECT)-MPI because it is an extractable tracer. The short half-life requires rapid image acquisition shortly after tracer administration, which reduces total study time. [9] The short half-life also allows for less radiation experienced by the patient. A standard visual perfusion imaging assessment is based on defining regional uptake relative to the maximum uptake in the myocardium. Importantly, 82Rb PET also seems to provide prognostic value in patients who are obese and whose diagnosis remains uncertain after SPECT-MPI.

82Rb myocardial blood flow quantification is expected to improve the detection of multivessel coronary heart disease. [9] 82Rb/PET is a valuable tool in ischemia identification. Myocardial Ischemia is an inadequate blood supply to the heart. 82Rb/PET can be used to quantify the myocardial flow reserve in the ventricles which then allows the medical professional to make an accurate diagnosis and prognosis of the patient. Various vasoreactivity studies are made possible through 82Rb/PET imaging due to its quantification of myocardial blood flow. It is possible to quantify stress in patients under the same reasoning. [10] Recently it has been shown that neuroendocrine tumor metastasis can be imaged with 82Rb due to its ability to quantify myocardial blood flow (MBF) during rest and pharmacological stress, commonly performed with adenosine. [11]

Advantages

A comparison of SPECT and PET images from a 56-year-old woman with a history of obesity (BMI: 31.2 cm/kg2), hypertension, hyperlipemia, and type 2 diabetes complicated of retinopathy and kidney failure. PETcomaprison.jpg
A comparison of SPECT and PET images from a 56-year-old woman with a history of obesity (BMI: 31.2 cm/kg2), hypertension, hyperlipemia, and type 2 diabetes complicated of retinopathy and kidney failure.

One of the main advantages of 82Rb is its availability in nuclear medicine departments. This isotope is available after 10-minute elution of a 82Sr column; this makes it possible to produce enough samples to inject about 10–15 patients a day. [7] Another advantage of 82Rb would be its high count density in myocardial tissue. 82Rb/PET has shown greater uniformity and count density than 99mTc-SPECT when examining the myocardium. This results in higher interpretive confidence and greater accuracy. It allows for quantification of coronary flow reserve and myocardial blood flow. 82Rb also has an advantage in that it has a very short half-life which results in much lower radiation exposure for the patient. This is especially important as the use of myocardial imaging increases in the medical field. When it comes to patients, 82Rb is beneficial to use when the patient is obese or physically unable to perform a stress test. It also has side effects limited to minor irritation around the injection site. [12]

Limitations

A serious limitation of 82Rb would be its cost. Currently 99mTc costs on average $70 per dose, needing two doses; whereas 82Rb costs about $250 a dose. Another limitation of this isotope is that it needs a dedicated PET/CT camera, and in places like Europe where a 82Sr/82Rb generator is still yet to be approved that can be hard to find. [7]

Related Research Articles

<span class="mw-page-title-main">Positron emission tomography</span> Medical imaging technique

Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, regional chemical composition, and absorption. Different tracers are used for various imaging purposes, depending on the target process within the body.

<span class="mw-page-title-main">Angina</span> Chest discomfort that is generally brought on by inadequate blood flow to the cardiac muscle

Angina, also known as angina pectoris, is chest pain or pressure, usually caused by insufficient blood flow to the heart muscle (myocardium). It is most commonly a symptom of coronary artery disease.

<span class="mw-page-title-main">Single-photon emission computed tomography</span> Nuclear medicine tomographic imaging technique

Single-photon emission computed tomography is a nuclear medicine tomographic imaging technique using gamma rays. It is very similar to conventional nuclear medicine planar imaging using a gamma camera, but is able to provide true 3D information. This information is typically presented as cross-sectional slices through the patient, but can be freely reformatted or manipulated as required.

<span class="mw-page-title-main">Nuclear medicine</span> Medical specialty

Nuclear medicine or nucleology is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear imaging, in a sense, is "radiology done inside out" because it records radiation emitted from within the body rather than radiation that is transmitted through the body from external sources like X-ray generators. In addition, nuclear medicine scans differ from radiology, as the emphasis is not on imaging anatomy, but on the function. For such reason, it is called a physiological imaging modality. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) scans are the two most common imaging modalities in nuclear medicine.

Technetium (<sup>99m</sup>Tc) sestamibi Pharmaceutical drug

Technetium (99mTc) sestamibi (INN) is a pharmaceutical agent used in nuclear medicine imaging. The drug is a coordination complex consisting of the radioisotope technetium-99m bound to six (sesta=6) methoxyisobutylisonitrile (MIBI) ligands. The anion is not defined. The generic drug became available late September 2008. A scan of a patient using MIBI is commonly known as a "MIBI scan".

<span class="mw-page-title-main">Scintigraphy</span> Diagnostic imaging test in nuclear medicine

Scintigraphy, also known as a gamma scan, is a diagnostic test in nuclear medicine, where radioisotopes attached to drugs that travel to a specific organ or tissue (radiopharmaceuticals) are taken internally and the emitted gamma radiation is captured by gamma cameras, which are external detectors that form two-dimensional images in a process similar to the capture of x-ray images. In contrast, SPECT and positron emission tomography (PET) form 3-dimensional images and are therefore classified as separate techniques from scintigraphy, although they also use gamma cameras to detect internal radiation. Scintigraphy is unlike a diagnostic X-ray where external radiation is passed through the body to form an image.

<span class="mw-page-title-main">Perfusion</span> Passage of fluid through the circulatory or lymphatic system to an organ or tissue

Perfusion is the passage of fluid through the circulatory system or lymphatic system to an organ or a tissue, usually referring to the delivery of blood to a capillary bed in tissue. Perfusion may also refer to fixation via perfusion, used in histological studies. Perfusion is measured as the rate at which blood is delivered to tissue, or volume of blood per unit time per unit tissue mass. The SI unit is m3/(s·kg), although for human organs perfusion is typically reported in ml/min/g. The word is derived from the French verb perfuser, meaning to "pour over or through". All animal tissues require an adequate blood supply for health and life. Poor perfusion (malperfusion), that is, ischemia, causes health problems, as seen in cardiovascular disease, including coronary artery disease, cerebrovascular disease, peripheral artery disease, and many other conditions.

<span class="mw-page-title-main">Bone scintigraphy</span> Nuclear medicine imaging technique

A bone scan or bone scintigraphy is a nuclear medicine imaging technique of the bone. It can help diagnose a number of bone conditions, including cancer of the bone or metastasis, location of bone inflammation and fractures, and bone infection (osteomyelitis).

Rubidium-82 chloride is a form of rubidium chloride containing a radioactive isotope of rubidium. It is marketed under the brand name Cardiogen-82 by Bracco Diagnostics for use in Myocardial perfusion imaging. It is rapidly taken up by heart muscle cells, and therefore can be used to identify regions of heart muscle that are receiving poor blood flow in a technique called PET perfusion imaging. The half-life of rubidium-82 is only 1.27 minutes; it is normally produced at the place of use by rubidium generators.

Myocardial stunning or transient post-ischemic myocardial dysfunction is a state of mechanical cardiac dysfunction that can occur in a portion of myocardium without necrosis after a brief interruption in perfusion, despite the timely restoration of normal coronary blood flow. In this situation, even after ischemia has been relieved and myocardial blood flow (MBF) returns to normal, myocardial function is still depressed for a variable period of time, usually days to weeks. This reversible reduction of function of heart contraction after reperfusion is not accounted for by tissue damage or reduced blood flow, but rather, its thought to represent a perfusion-contraction "mismatch". Myocardial stunning was first described in laboratory canine experiments in the 1970s where LV wall abnormalities were observed following coronary artery occlusion and subsequent reperfusion.

<span class="mw-page-title-main">Ventilation/perfusion scan</span> Medical imaging to evaluate circulation of air and blood in the lungs

A ventilation/perfusion lung scan, also called a V/Q lung scan, or ventilation/perfusion scintigraphy, is a type of medical imaging using scintigraphy and medical isotopes to evaluate the circulation of air and blood within a patient's lungs, in order to determine the ventilation/perfusion ratio. The ventilation part of the test looks at the ability of air to reach all parts of the lungs, while the perfusion part evaluates how well blood circulates within the lungs. As Q in physiology is the letter used to describe bloodflow the term V/Q scan emerged.

<span class="mw-page-title-main">Myocardial perfusion imaging</span> Nuclear medicine imaging method

Myocardial perfusion imaging or scanning is a nuclear medicine procedure that illustrates the function of the heart muscle (myocardium).

Perfusion is the passage of fluid through the lymphatic system or blood vessels to an organ or a tissue. The practice of perfusion scanning is the process by which this perfusion can be observed, recorded and quantified. The term perfusion scanning encompasses a wide range of medical imaging modalities.

<span class="mw-page-title-main">Anomalous left coronary artery from the pulmonary artery</span> Medical condition

Anomalous left coronary artery from the pulmonary artery is a rare congenital anomaly occurring in approximately 1 in 300,000 liveborn children. The diagnosis comprises between 0.24 and 0.46% of all cases of congenital heart disease. The anomalous left coronary artery (LCA) usually arises from the pulmonary artery instead of the aortic sinus. In fetal life, the high pressure in the pulmonic artery and the fetal shunts enable oxygen-rich blood to flow in the LCA. By the time of birth, the pressure will decrease in the pulmonic artery and the child will have a postnatal circulation. The myocardium which is supplied by the LCA, will therefore be dependent on collateral blood flow from the other coronary arteries, mainly the RCA. Because the pressure in RCA exceeds the pressure in LCA a collateral circulation will increase. This situation ultimately can lead to blood flowing from the RCA into the LCA retrograde and into the pulmonary artery, thus forming a left-to-right shunt.

Cardiac PET is a form of diagnostic imaging in which the presence of heart disease is evaluated using a PET scanner. Intravenous injection of a radiotracer is performed as part of the scan. Commonly used radiotracers are Rubidium-82, Nitrogen-13 ammonia and Oxygen-15 water.

A diagnosis of myocardial infarction is created by integrating the history of the presenting illness and physical examination with electrocardiogram findings and cardiac markers. A coronary angiogram allows visualization of narrowings or obstructions on the heart vessels, and therapeutic measures can follow immediately. At autopsy, a pathologist can diagnose a myocardial infarction based on anatomopathological findings.

<span class="mw-page-title-main">Cardiac magnetic resonance imaging perfusion</span>

Cardiac magnetic resonance imaging perfusion, also known as stress CMR perfusion, is a clinical magnetic resonance imaging test performed on patients with known or suspected coronary artery disease to determine if there are perfusion defects in the myocardium of the left ventricle that are caused by narrowing of one or more of the coronary arteries.

Cardiac imaging refers to minimally invasive imaging of the heart using ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), or nuclear medicine (NM) imaging with PET or SPECT. These cardiac techniques are otherwise referred to as echocardiography, Cardiac MRI, Cardiac CT, Cardiac PET and Cardiac SPECT including myocardial perfusion imaging.

<span class="mw-page-title-main">Oxygen-15 labelled water</span> Chemical compound

Oxygen-15 labelled water (also known as 15O-water, [O-15]-H2O, or H215O) is a radioactive variation of regular water, in which the oxygen atom has been replaced by oxygen-15 (15O), a positron-emitting isotope. 15O-water is used as a radioactive tracer for measuring and quantifying blood flow using positron emission tomography (PET) in the heart, brain and tumors.

Theranostics, also known as theragnostics, is a technique in personalised medicine and nuclear medicine where a one radioactive drug is used to identify (diagnose) and a second radioactive drug is used to treat cancerous tumors.

References

  1. Love, WD; Burch, GE (1953). "A comparison of potassium 42, rubidium 86, and cesium 134 as tracers of potassium in the study of cation metabolism of human erythrocytes in vitro". Journal of Laboratory and Clinical Medicine . 41 (3): 351–62. PMID   13035272.
  2. Cairns, AB Jr; Love, WD; Burch, GE (1960). "The effects of acetylstrophanthidin on the kinetics of potassium and Rb86 in the myocardium of dogs". American Heart Journal . 59 (3): 404–11. doi:10.1016/0002-8703(60)90303-3. PMID   13806832.
  3. Yano, Y; Roth, EP (1979). "An alumina column 82Rb generator". International Journal of Applied Radiation and Isotopes . 30 (6): 382–385. doi:10.1016/0020-708X(79)90026-7.
  4. Selwyn, AP; Allan, RM; L'Abbate, A; Horlock, P; Camici, P; Clark, J; O'Brien, HA; Grant, PM (1982). "Relation between regional myocardial uptake of rubidium-82 and perfusion: Absolute reduction of cation uptake in ischemia". American Journal of Cardiology . 50 (1): 112–121. doi:10.1016/0002-9149(82)90016-9. PMID   6979917.
  5. Polte, CL; Burck, I; Gjertsson, P; Lomsky, M; Nekolla, SG; Nagel, E (2016). "Cardiac Positron Emission Tomography: a Clinical Perspective". Current Cardiovascular Imaging Reports . 9 (3). doi:10.1007/s12410-016-9371-3. S2CID   74073793.
  6. Bateman, T; Heller, G; McGhie, A; Friedman, J; Case, J; Bryngelson, J; Hertenstein, G; Moutray, K; Reid, K; Cullom, S (2006). "Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: Comparison with ECG-gated Tc-99m sestamibi SPECT". Journal of Nuclear Cardiology . 13 (1): 24–33. doi:10.1016/j.nuclcard.2005.12.004. PMID   16464714. S2CID   12897775.
  7. 1 2 3 4 Chatal, JF; Rouzet, F; Haddad, F; Bourdeau, C; Mathieu, C; Le Guludec, D (2015). "Story of rubidium-82 and advantages for myocardial perfusion PET imaging". Frontiers in Medicine . 2: 65. doi: 10.3389/fmed.2015.00065 . PMC   4566054 . PMID   26442267.
  8. 1 2 3 "CardioGen-82 Rubidium Rb 82 Generator" (PDF). Bracco Diagnostics. 2000. Archived from the original (PDF) on 6 September 2011. Retrieved 27 March 2016.{{cite journal}}: Cite journal requires |journal= (help)
  9. 1 2 Yoshinaga, K; Klein, R; Tamaki, N (2009). "Generator-produced rubidium-82 positron emission tomography myocardial perfusion imaging—From basic aspects to clinical applications". Journal of Cardiology . 55 (2): 163–73. doi: 10.1016/j.jjcc.2010.01.001 . PMID   20206068.
  10. Ziadi, MC; deKemp, RA; Williams, KA (2011). "Impaired Myocardial Flow Reserve on Rubidium-82 Positron Emission Tomography Imaging Predicts Adverse Outcomes in Patients Assessed for Myocardial Ischemia". Journal of the American College of Cardiology . 58 (7): 740–748. doi: 10.1016/j.jacc.2011.01.065 . PMID   21816311.
  11. Hasbak, P; Enevoldsen, LH; Fosbøl, MØ; Skovgaard, D; Knigge, UP; Kjær, A (2015). "Rubidium-82 uptake in metastases from neuroendocrine tumors: No flow response to adenosine". Journal of Nuclear Cardiology . 23 (4): 840–2. doi:10.1007/s12350-015-0251-z. PMID   26358083. S2CID   26358187.
  12. Sampson, UK; Dorbala, S; Limaye, A; Kwong, R; Di Carli, MF (2007). "Diagnostic Accuracy of Rubidium-82 Myocardial Perfusion Imaging With Hybrid Positron Emission Tomography/Computed Tomography in the Detection of Coronary Artery Disease". Journal of the American College of Cardiology . 49 (10): 1052–8. doi: 10.1016/j.jacc.2006.12.015 . PMID   17349884.

Further reading