Fluorocholine

Last updated
Fluorocholine
Fluorocholine chloride.svg
Structure of fluorocholine chloride
Clinical data
Other namesN,N-dimethyl-N-fluoromethyl-2-hydroxyethylammonium, FCH [1]
Routes of
administration
intravenous
ATC code
Identifiers
  • Fluoromethyl-(2-hydroxyethyl)-dimethylazanium chloride
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C5H13ClFNO
Molar mass 157.61 g·mol−1
3D model (JSmol)
  • C[N+](C)(CCO)CF.[Cl-]
  • InChI=1S/C5H13FNO.ClH/c1-7(2,5-6)3-4-8;/h8H,3-5H2,1-2H3;1H/q+1;/p-1
  • Key:QJEHIIJVWXGJAB-UHFFFAOYSA-M

18F-Fluorocholine is a fluorinated choline derivative and an oncologic PET tracer. [2]

Related Research Articles

<span class="mw-page-title-main">Positron emission tomography</span> Medical imaging technique

Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, regional chemical composition, and absorption. Different tracers are used for various imaging purposes, depending on the target process within the body.

<span class="mw-page-title-main">Bone scintigraphy</span> Nuclear medicine imaging technique

A bone scan or bone scintigraphy is a nuclear medicine imaging technique used to help diagnose and assess different bone diseases. These include cancer of the bone or metastasis, location of bone inflammation and fractures, and bone infection (osteomyelitis).

Fluorodeoxyglucose (<sup>18</sup>F) Chemical compound

[18F]Fluorodeoxyglucose (INN), or fluorodeoxyglucose F 18, also commonly called fluorodeoxyglucose and abbreviated [18F]FDG, 2-[18F]FDG or FDG, is a radiopharmaceutical, specifically a radiotracer, used in the medical imaging modality positron emission tomography (PET). Chemically, it is 2-deoxy-2-[18F]fluoro-D-glucose, a glucose analog, with the positron-emitting radionuclide fluorine-18 substituted for the normal hydroxyl group at the C-2 position in the glucose molecule.

<span class="mw-page-title-main">Fluorine-18</span> Isotope of fluorine emitting a positron

Fluorine-18 is a fluorine radioisotope which is an important source of positrons. It has a mass of 18.0009380(6) u and its half-life is 109.771(20) minutes. It decays by positron emission 96.7% of the time and electron capture 3.3% of the time. Both modes of decay yield stable oxygen-18.

<span class="mw-page-title-main">18F-EF5</span> Chemical compound

EF5 is a nitroimidazole derivative used in oncology research. Due to its similarity in chemical structure to etanidazole, EF5 binds in cells displaying hypoxia.

<span class="mw-page-title-main">MK-9470</span> Chemical compound

MK-9470 is a synthetic compound which binds to the CB1 cannabinoid receptor and functions as an inverse agonist. The 18F-labeled version, [18F]-MK-9470, is used in research as a positron emission tomography (PET) tracer for brain imaging of the CB1 receptor.

<span class="mw-page-title-main">2-Fluoroethanol</span> Chemical compound

2-Fluoroethanol is the organic compound with the formula CH2FCH2OH. This colorless liquid is one of the simplest stable fluorinated alcohols. It was once used as a pesticide. The related difluoro- and trifluoroethanols are far less dangerous.

Emission computed tomography (ECT) is a type of tomography involving radioactive or emissions. Types include positron emission tomography (PET) and Single-photon emission computed tomography (SPECT).

<span class="mw-page-title-main">Brain positron emission tomography</span> Form of positron emission tomography

Brain positron emission tomography is a form of positron emission tomography (PET) that is used to measure brain metabolism and the distribution of exogenous radiolabeled chemical agents throughout the brain. PET measures emissions from radioactively labeled metabolically active chemicals that have been injected into the bloodstream. The emission data from brain PET are computer-processed to produce multi-dimensional images of the distribution of the chemicals throughout the brain.

Mefway (<sup>18</sup>F) Chemical compound

Mefway is a serotonin 5-HT1A receptor antagonist used in medical research, usually in the form of mefway (18F) as a positron emission tomography (PET) radiotracer.

Florbetaben, sold under the brand name Neuraceq, is a diagnostic radiotracer developed for routine clinical application to visualize β-amyloid plaques in the brain. It is a fluorine-18 (18F)-labeled stilbene derivative.

<span class="mw-page-title-main">Fallypride</span> Chemical compound

Fallypride is a high affinity dopamine D2/D3 receptor antagonist used in medical research, usually in the form of fallypride (18F) as a positron emission tomography (PET) radiotracer in human studies.

Metabolic trapping refers to a localization mechanism of synthesized radiocompounds in the human body. It can be defined as the intracellular accumulation of a radioactive tracer based on the relative metabolic activity of the body's tissues. It is a basic principle of the design of radiopharmaceuticals as metabolic probes for functional studies or tumor location.

Fluoroethyl-<small>L</small>-tyrosine (<sup>18</sup>F) Chemical compound

Fluoroethyl-l-tyrosine (18F) commonly known as [18F]FET, is a radiopharmaceutical tracer used in positron emission tomography (PET) imaging. This synthetic amino acid, labeled with the radioactive isotope fluorine-18, is a valuable radiopharmaceutical tracer for used in neuro-oncology for diagnosing, planning treatment, and following up on brain tumors such as gliomas. The tracer's ability to provide detailed metabolic imaging of tumors makes it an essential tool in the clinical management of brain cancer patients. Continued advancements in PET imaging technology and the development of more efficient synthesis methods are expected to further enhance the clinical utility of [18F]FET.

<span class="mw-page-title-main">Fluorothymidine F-18</span> Chemical compound

Fluorothymidine F-18 (FLT) is a tumor-specific PET tracer and radiopharmaceutical. It is an isotopologue of alovudine. FLT is suitable for monitoring how tumors respond to cytostatic therapy. FLT accumulates in proliferating cells where it indicates the activity of the enzyme thymidine kinase. Cell division can be characterized by the activity of that enzyme. FLT is phosphorylated as though it were thymidine, and is subsequently incorporated into DNA. Thymidine is essential for DNA replication. Considering that FLT lacks a 3′-hydroxy group, transcription of DNA is impeded following incorporating of FLT. FLT indicates changes in tumor cell proliferation by tracking the restoration of nucleosides from degenerated DNA.

Fluciclovine (<sup>18</sup>F) Chemical compound

Fluciclovine (18F), also known as anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid, and sold under the brand name Axumin, is a diagnostic agent used for positron emission tomography (PET) imaging in men with suspected prostate cancer recurrence based on elevated prostate specific antigen (PSA) levels.

Jason S. Lewis is a British radiochemist whose work relates to oncologic therapy and diagnosis. His research focus is a molecular imaging-based program focused on radiopharmaceutical development as well as the study of multimodality small- and biomolecule-based agents and their clinical translation. He has worked on the development of small molecules as well as radiolabeled peptides and antibodies probing the overexpression of receptors and antigens on tumors.

Arterial input function (AIF), also known as a plasma input function, refers to the concentration of tracer in blood-plasma in an artery measured over time. The oldest record on PubMed shows that AIF was used by Harvey et al. in 1962 to measure the exchange of materials between red blood cells and blood plasma, and by other researchers in 1983 for positron emission tomography (PET) studies. Nowadays, kinetic analysis is performed in various medical imaging techniques, which requires an AIF as one of the inputs to the mathematical model, for example, in dynamic PET imaging, or perfusion CT, or dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).

Positron emission tomography for bone imaging, as an in vivo tracer technique, allows the measurement of the regional concentration of radioactivity proportional to the image pixel values averaged over a region of interest (ROI) in bones. Positron emission tomography is a functional imaging technique that uses [18F]NaF radiotracer to visualise and quantify regional bone metabolism and blood flow. [18F]NaF has been used for imaging bones for the last 60 years. This article focuses on the pharmacokinetics of [18F]NaF in bones, and various semi-quantitative and quantitative methods for quantifying regional bone metabolism using [18F]NaF PET images.

Marcus Hacker is a university professor and specialist in Nuclear medicine at the Medical University of Vienna.

References

  1. CID 404591 from PubChem
  2. Hara T (December 2001). "18F-fluorocholine: a new oncologic PET tracer". Journal of Nuclear Medicine. 42 (12): 1815–7. PMID   11752078.