Isotopes of tellurium

Last updated

Isotopes of tellurium  (52Te)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
120Te0.09% stable
121Te synth 19.31 d ε 121Sb
122Te2.55%stable
123Te0.89%stable [2]
124Te4.74%stable
125Te7.07%stable
126Te18.8%stable
127Tesynth9.35 h β 127I
128Te31.7%2.2×1024 y ββ 128Xe
129Tesynth69.6 minβ 129I
130Te34.1%7.91×1020 yββ 130Xe
Standard atomic weight Ar°(Te)

There are 39 known isotopes and 17 nuclear isomers of tellurium (52Te), with atomic masses that range from 104 to 142. These are listed in the table below.

Naturally-occurring tellurium on Earth consists of eight isotopes. Two of these have been found to be radioactive: 128Te and 130Te undergo double beta decay with half-lives of, respectively, 2.2×1024 (2.2 septillion) years (the longest half-life of all nuclides proven to be radioactive) [5] and 8.2×1020 (820 quintillion) years. The longest-lived artificial radioisotope of tellurium is 121Te with a half-life of about 19 days. Several nuclear isomers have longer half-lives, the longest being 121mTe with a half-life of 154 days.

The very-long-lived radioisotopes 128Te and 130Te are the two most common isotopes of tellurium. Of elements with at least one stable isotope, only indium and rhenium likewise have a radioisotope in greater abundance than a stable one.

It has been claimed that electron capture of 123Te was observed, but more recent measurements of the same team have disproved this. [6] The half-life of 123Te is longer than 9.2 × 1016 years, and probably much longer. [6]

124Te can be used as a starting material in the production of radionuclides by a cyclotron or other particle accelerators. Some common radionuclides that can be produced from tellurium-124 are iodine-123 and iodine-124.

The short-lived isotope 135Te (half-life 19 seconds) is produced as a fission product in nuclear reactors. It decays, via two beta decays, to 135Xe, the most powerful known neutron absorber, and the cause of the iodine pit phenomenon.

With the exception of beryllium, tellurium is the second lightest element observed to have isotopes capable of undergoing alpha decay, with isotopes 104Te to 109Te being seen to undergo this mode of decay. Some lighter elements, namely those in the vicinity of 8Be, have isotopes with delayed alpha emission (following proton or beta emission) as a rare branch.

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [7]
[n 2] [n 3]
Half-life [1]
[n 4] [n 5]
Decay
mode
[1]
[n 6]
Daughter
isotope

[n 7]
Spin and
parity [1]
[n 8] [n 5]
Natural abundance (mole fraction)
Excitation energyNormal proportion [1] Range of variation
104Te5252103.94672(34)<4 ns α 100Sn0+
105Te5253104.94330(32)633(66) nsα101Sn(7/2+)
106Te5254105.93750(11)78(11) μsα102Sn0+
107Te5255106.93488(11)#3.22(9) msα (70%)103Sn5/2+#
β+ (30%)107Sb
108Te5256107.9293805(58)2.1(1) sα (49%)104Sn0+
β+ (48.6%)108Sb
β+, p (2.4%)107Sn
β+, α (<0.065%)104In
109Te5257108.9273045(47)4.4(2) sβ+ (86.7%)109Sb(5/2+)
β+, p (9.4%)108Sn
α (3.9%)105Sn
β+, α (<0.0049%)105In
110Te5258109.9224581(71)18.6(8) sβ+110Sb0+
111Te5259110.9210006(69)26.2(6) sβ+111Sb(5/2)+
β+, p (?%)110Sn
112Te5260111.9167278(90)2.0(2) minβ+112Sb0+
113Te5261112.915891(30)1.7(2) minβ+113Sb(7/2+)
114Te5262113.912088(26)15.2(7) minβ+114Sb0+
115Te5263114.911902(30)5.8(2) minβ+115Sb7/2+
115m1Te [n 9] 10(6) keV6.7(4) minβ+115Sb(1/2+)
115m2Te280.05(20) keV7.5(2) μs IT 115Te11/2−
116Te5264115.908466(26)2.49(4) hβ+116Sb0+
117Te5265116.908646(14)62(2) min EC (75%)117Sb1/2+
β+117Sb
117mTe296.1(5) keV103(3) msIT117Te(11/2−)
118Te5266117.905860(20)6.00(2) dEC118Sb0+
119Te5267118.9064057(78)16.05(5) hEC (97.94%)119Sb1/2+
β+ (2.06%)119Sb
119mTe260.96(5) keV4.70(4) dEC (99.59%)119Sb11/2−
β+ (0.41%)119Sb
120Te5268119.9040658(19) Observationally Stable [n 10] 0+9(1)×10−4
121Te5269120.904945(28)19.31(7) dβ+121Sb1/2+
121mTe293.974(22) keV164.7(5) dIT (88.6%)121Te11/2−
β+ (11.4%)121Sb
122Te5270121.9030447(15)Stable0+0.0255(12)
123Te5271122.9042710(15)Observationally Stable [n 11] 1/2+0.0089(3)
123mTe247.47(4) keV119.2(1) dIT123Te11/2−
124Te5272123.9028183(15)Stable0+0.0474(14)
125Te [n 12] 5273124.9044312(15)Stable1/2+0.0707(15)
125mTe144.775(8) keV57.40(15) dIT125Te11/2−
126Te5274125.9033121(15)Stable0+0.1884(25)
127Te [n 12] 5275126.9052270(15)9.35(7) hβ127I3/2+
127mTe88.23(7) keV106.1(7) dIT (97.86%)127Te11/2−
β (2.14%)127I
128Te [n 12] [n 13] 5276127.90446124(76)2.25(9)×1024 y [n 14] ββ128Xe0+0.3174(8)
128mTe2790.8(3) keV363(27) nsIT128Te(10+)
129Te [n 12] 5277128.90659642(76)69.6(3) minβ129I3/2+
129mTe105.51(3) keV33.6(1) dIT (64%)129Te11/2−
β (36%)129I
130Te [n 12] [n 13] 5278129.906222745(11)7.91(21)×1020 yββ130Xe0+0.3408(62)
130m1Te2146.41(4) keV186(11) nsIT130Te7−
130m2Te2667.2(8) keV1.90(8) μsIT130Te(10+)
130m3Te4373.9(9) keV53(8) nsIT130Te(15−)
131Te [n 12] 5279130.908522210(65)25.0(1) minβ131I3/2+
131m1Te182.258(18) keV32.48(11) hβ (74.1%)131I11/2−
IT (25.9%)131Te
131m2Te1940.0(4) keV93(12) msIT131Te(23/2+)
132Te [n 12] 5280131.9085467(37)3.204(13) dβ132I0+
132m1Te1774.80(9) keV145(8) nsIT132Te6+
132m2Te1925.47(9) keV28.5(9) μsIT132Te7−
132m3Te2723.3(8) keV3.62(6) μsIT132Te(10+)
133Te5281132.9109633(22)12.5(3) minβ133I3/2+#
133m1Te334.26(4) keV55.4(4) minβ (83.5%)133I(11/2−)
IT (16.5%)133Te
133m2Te1610.4(5) keV100(5) nsIT133Te(19/2−)
134Te5282133.9113964(29)41.8(8) minβ134I0+
134mTe1691.34(16) keV164.5(7) nsIT134Te6+
135Te [n 15] 5283134.9165547(18)19.0(2) sβ135I(7/2−)
135mTe1554.89(16) keV511(20) nsIT135Te(19/2−)
136Te5284135.9201012(24)17.63(9) sβ (98.63%)136I0+
β, n (1.37%)135I
137Te5285136.9255994(23)2.49(5) sβ (97.06%)137I3/2−#
β, n (2.94%)136I
138Te5286137.9294725(41)1.46(25) sβ (95.20%)138I0+
β, n (4.80%)137I
139Te5287138.9353672(38)724(81) msβ139I5/2−#
140Te5288139.939487(15)351(5) msβ (?%)140I0+
β, n (?%)139I
141Te5289140.94560(43)#193(16) msβ141I5/2−#
142Te5290141.95003(54)#147(8) msβ142I0+
143Te5291142.95649(54)#120(8) msβ143I7/2+#
144Te5292143.96112(32)#93(60) msβ144I0+
145Te5293144.96778(32)#75# ms
[>550 ns]
β145I
This table header & footer:
  1. mTe  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life  nearly stable, half-life longer than age of universe.
  5. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  7. Bold symbol as daughter  Daughter product is stable.
  8. () spin value  Indicates spin with weak assignment arguments.
  9. Order of ground state and isomer is uncertain.
  10. Believed to undergo β+β+ decay to 120Sn with a half-life over 1.6×1021 years
  11. Believed to undergo electron capture to 123Sb with a half-life over 9.2×1016 years
  12. 1 2 3 4 5 6 7 Fission product
  13. 1 2 Primordial radionuclide
  14. Longest measured half-life of any nuclide
  15. Very short-lived fission product, responsible for the iodine pit as precursor of 135Xe via 135I

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. Alessandrello, A.; Arnaboldi, C.; Brofferio, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Sisti, M.; Vanzini, M.; Zanotti, L.; Giuliani, A.; Pedretti, M.; Bucci, C.; Pobes, C. (2003). "New limits on naturally occurring electron capture of 123Te". Physical Review C. 67: 014323. arXiv: hep-ex/0211015 . Bibcode:2003PhRvC..67a4323A. doi:10.1103/PhysRevC.67.014323.
  3. "Standard Atomic Weights: Tellurium". CIAAW. 1969.
  4. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  5. Many isotopes are expected to have longer half-lives, but decay has not yet been observed in these, allowing only a lower limit to be placed on their half-lives
  6. 1 2 A. Alessandrello; et al. (January 2003). "New Limits on Naturally Occurring Electron Capture of 123Te". Physical Review C. 67 (1): 014323. arXiv: hep-ex/0211015 . Bibcode:2003PhRvC..67a4323A. doi:10.1103/PhysRevC.67.014323. S2CID   119523039.
  7. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.