Isotopes of copper

Last updated

Isotopes of copper  (29Cu)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
63Cu69.2% stable
64Cu synth 12.70 h β+ 64Ni
β 64Zn
65Cu30.9%stable
67Cusynth61.83 hβ 67Zn
Standard atomic weight Ar°(Cu)

Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 28 known radioisotopes from 55Cu to 84Cu. The most stable radioisotope, 67Cu, has a half-life of only 61.83 hours, then follow 64Cu at 12.70 hours and 61Cu at 3.34 hours. The others have half-lives all under an hour and most under a minute. The isotopes with mass below 63 generally undergo positron emission and electron capture to nickel isotopes, while isotopes with mass above 65 generally undergo β decay to zinc isotopes. The single example in between, 64Cu, decays both ways.

Contents

There are at least 10 metastable isomers of copper, of which the most stable is 68mCu with a half-life of 3.75 minutes.

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [4]
[n 2] [n 3]
Half-life [1]
Decay
mode
[1]
[n 4]
Daughter
isotope

[n 5]
Spin and
parity [1]
[n 6] [n 7]
Natural abundance (mole fraction)
Excitation energy [n 7] Normal proportion [1] Range of variation
55Cu292654.96604(17)55.9(15) ms β+ 55Ni3/2−#
β+, p (?%)54Co
56Cu292755.9585293(69)80.8(6) msβ+ (99.60%)56Ni(4+)
β+, p (0.40%)55Co
57Cu292856.94921169(54)196.4(7) msβ+57Ni3/2−
58Cu292957.94453228(60)3.204(7) sβ+58Ni1+
59Cu293058.93949671(57)81.5(5) sβ+59Ni3/2−
60Cu293159.9373638(17)23.7(4) minβ+60Ni2+
61Cu293260.9334574(10)3.343(16) hβ+61Ni3/2−
62Cu293361.9325948(07)9.672(8) minβ+62Ni1+
63Cu293462.92959712(46)Stable3/2−0.6915(15)
64Cu 293563.92976400(46)12.7004(13) hβ+ (61.52%)64Ni1+
β (38.48%)64Zn
65Cu293664.92778948(69)Stable3/2−0.3085(15)
66Cu293765.92886880(70)5.120(14) minβ66Zn1+
66mCu1154.2(14) keV600(17) ns IT 66Cu(6)−
67Cu293866.92772949(96)61.83(12) hβ67Zn3/2−
68Cu293967.9296109(17)30.9(6) sβ68Zn1+
68mCu721.26(8) keV3.75(5) minIT (86%)68Cu6−
β (14%)68Zn
69Cu294068.929429267(15)2.85(15) minβ69Zn3/2−
69mCu2742.0(7) keV357(2) nsIT69Cu(13/2+)
70Cu294169.9323921(12)44.5(2) sβ70Zn6−
70m1Cu101.1(3) keV33(2) sβ (52%)70Zn3−
IT (48%)70Cu
70m2Cu242.6(5) keV6.6(2) sβ (93.2%)70Zn1+
IT (6.8%)70Cu
71Cu294270.9326768(16)19.4(14) sβ71Zn3/2−
71mCu2755.7(6) keV271(13) nsIT71Cu(19/2−)
72Cu294371.9358203(15)6.63(3) sβ72Zn2−
72mCu270(3) keV1.76(3) μsIT72Cu(6−)
73Cu294472.9366744(21)4.20(12) sβ (99.71%)73Zn3/2−
β, n (0.29%)72Zn
74Cu294573.9398749(66)1.606(9) sβ (99.93%)74Zn2−
β, n (0.075%)73Zn
75Cu294674.94152382(77)1.224(3) sβ (97.3%)75Zn5/2−
β, n (2.7%)74Zn
75m1Cu61.7(4) keV0.310(8) μsIT75Cu1/2−
75m2Cu66.2(4) keV0.149(5) μsIT75Cu3/2−
76Cu [5] 294775.9452370(21)1.27(30) sβ (?%)76Zn(1,2)
β, n (?%)75Zn
76mCu [5] 64.8(25) keV637.7(55) msβ (?%)76Zn3−
β, n (?%)75Zn
IT (10–17%)76Cu
77Cu294876.9475436(13)470.3(17) msβ (69.9%)77Zn5/2−
β, n (30.1%)76Zn
78Cu294977.9519206(81) [6] 330.7(20) msβ, n (50.6%)77Zn(6−)
β (49.4%)78Zn
79Cu295078.95447(11)241.3(21) msβ, n (66%)78Zn(5/2−)
β (34%)79Zn
80Cu295179.96062(32)#113.3(64) msβ, n (59%)79Zn
β (41%)80Zn
81Cu295280.96574(32)#73.2(68) msβ, n (81%)80Zn5/2−#
β (19%)81Zn
82Cu295381.97238(43)#34(7) msβ82Zn
83Cu295482.97811(54)#21# ms [>410 ns]5/2−#
84Cu [7] 295583.98527(54)#
This table header & footer:
  1. mCu  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  5. Bold symbol as daughter  Daughter product is stable.
  6. () spin value  Indicates spin with weak assignment arguments.
  7. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

Copper nuclear magnetic resonance

Both stable isotopes of copper (63Cu and 65Cu) have nuclear spin of 3/2−, and thus produce nuclear magnetic resonance spectra, although the spectral lines are broad due to quadrupolar broadening. 63Cu is the more sensitive nucleus while 65Cu yields very slightly narrower signals. Usually though 63Cu NMR is preferred. [8]

Copper-64 and other potential medical isotopes

Copper offers a relatively large number of radioisotopes that are potentially useful for nuclear medicine.

There is growing interest in the use of 64Cu, 62Cu, 61Cu, and 60Cu for diagnostic purposes and 67Cu and 64Cu for targeted radiotherapy. For example, 64Cu has a longer half-life than most positron-emitters (12.7 hours) and is thus ideal for diagnostic PET imaging of biological molecules. [9]

See also

Daughter products other than copper

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Copper". CIAAW. 1969.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. 1 2 Canete, L.; Giraud, S.; Kankainen, A.; Bastin, B.; Nowacki, F.; Ascher, P.; Eronen, T.; Girard Alcindor, V.; Jokinen, A.; Khanam, A.; Moore, I.D.; Nesterenko, D.; De Oliveira, F.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; De Roubin, A.; Rubchenya, V.; Vilen, M.; Äystö, J. (June 2024). "Long-sought isomer turns out to be the ground state of 76Cu". Physics Letters B. 853: 138663. arXiv: 2401.14018 . doi:10.1016/j.physletb.2024.138663.
  6. Giraud, S.; Canete, L.; Bastin, B.; Kankainen, A.; Fantina, A.F.; Gulminelli, F.; Ascher, P.; Eronen, T.; Girard-Alcindor, V.; Jokinen, A.; Khanam, A.; Moore, I.D.; Nesterenko, D.A.; de Oliveira Santos, F.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; De Roubin, A.; Rubchenya, V.A.; Vilen, M.; Äystö, J. (October 2022). "Mass measurements towards doubly magic 78Ni: Hydrodynamics versus nuclear mass contribution in core-collapse supernovae". Physics Letters B. 833: 137309. doi:10.1016/j.physletb.2022.137309.
  7. Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313.
  8. "(Cu) Copper NMR".
  9. Harris, M. "Clarity uses a cutting-edge imaging technique to guide drug development". Nature Biotechnology September 2014: 34