Isotopes of iridium

Last updated

Isotopes of iridium  (77Ir)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
191Ir37.3% stable
192Ir synth73.827 d β 192Pt
ε 192Os
192m2Irsynth241 y IT 192Ir
193Ir62.7%stable
Standard atomic weight Ar°(Ir)

There are two natural isotopes of iridium (77Ir), and 37 radioisotopes, the most stable radioisotope being 192Ir with a half-life of 73.83 days, and many nuclear isomers, the most stable of which is 192m2Ir with a half-life of 241 years. All other isomers have half-lives under a year, most under a day. All isotopes of iridium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed. [4]

Contents

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [5]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6] [n 7]
Spin and
parity [1]
[n 8] [n 4]
Natural abundance (mole fraction)
Excitation energy [n 4] Normal proportion [1] Range of variation
164Ir [n 9] [6] 7787163.99197(34)#<0.5 μs p?163Os2−#
164mIr260(100)# keV70(10) μsp (96%)163Os(9+)
α (4%)160mRe
165Ir7788165.98572(22)#1.20+0.82
−0.74
 μs
[7]
p164Os(1/2+)
165mIr [6] ~255 keV340(40) μsp (88%)164Os(11/2−)
α (12%)161mRe
166Ir7789165.98582(22)#10.5(22) msα (93%)162Re(2)−
p (7%)165Os
166mIr171(6) keV15.1(9) msα (98.2%)162Re(9)+
p (1.8%)165Os
167Ir7790166.981672(20)29.3(6) msα (43.5%)163Re1/2+
p (38.6%)166Os
β+ (17.9%)167Os
167mIr175.5(21) keV28.5(5) msα (89%)163Re11/2−
β+ (11%)167Os
p (0.41%)166Os
168Ir7791167.979961(59)230(50) msα164Re(2)-
168mIr [n 10] 40(250) keV163(16) msα (77%)164Re(9,10)+
β+?168Os
β+, p?167Re
169Ir7792168.976282(25)353(4) msα (53%)165Re(1/2+)
β+ (47%)169Os
169mIr153(22) keV280(1) msα (79%)165Re(11/2−)
β+?169Os
p?168Os
170Ir7793169.97511(11)#910(150) msβ+ (94.8%)170Os(3−)
α (5.2%)166Re
170mIr [n 10] 40(50)# keV811(18) msα (38%)166Re(8+)
β+?170Os
IT?170Ir
171Ir7794170.971646(41)3.1(3) sβ+ (85%)171Os1/2+
α (15%)167Re
171mIr164(11)# keV1.47(6) sα (54%)167Re(11/2−)
β+?171Os
p?170Os
172Ir7795171.970607(35)4.4(3) sβ+ (~98%)172Os(3−,4−)
α (~2%)168Re
172mIr139(10) keV2.19(7) sβ+ (90.5%)172Os(7+)
α (9.5%)168Re
173Ir7796172.967505(11)9.0(8) sβ+ (96.5%)173Os(1/2+,3/2+)
α (3.5%)169Re
173mIr226(9) keV2.20(5) sβ+ (88%)173Os11/2−
α (12%)169Re
174Ir7797173.966950(12)7.9(6) sβ+ (99.5%)174Os(2+,3−)
α (0.5%)170Re
174mIr124(16) keV4.9(3) sβ+ (97.5%)174Os(6,7,8,9)
α (2.5%)170Re
175Ir7798174.964150(13)9(2) sβ+ (99.15%)175Os(1/2+)
α (0.85%)171Re
175m1Ir50(40)# keV33(4) sβ+175Os9/2−#
175m2Ir97.4(7) keV6.58(15) μsIT175Ir(5/2−)
176Ir7799175.9636263(87)8.7(5) sβ+ (96.9%)176Os(3+)
α (3.1%)172Re
177Ir77100176.961302(21)29.8(17) sβ+ (99.94%)177Os5/2−
α (0.06%)173Re
177mIr180.9(4) keV>100 nsIT177Ir(5/2+)
178Ir77101177.961079(20)12(2) sβ+178Os3+#
179Ir77102178.959118(10)79(1) sβ+179Os(5/2)−
180Ir77103179.959229(23)1.5(1) minβ+180Os(5+)
181Ir77104180.9576347(56)4.90(15) minβ+181Os5/2−
181m1Ir289.33(13) keV298 nsIT181Ir5/2+
181m2Ir366.30(22) keV126(6) nsIT181Ir9/2−
182Ir77105181.958076(23)15.0(10) minβ+182Os3+
182m1Ir71.02(17) keV170(40) nsIT182Ir(5)+
182m2Ir176.4(3) keV130(50) nsIT182Ir(6−)
183Ir77106182.956841(26)58(5) minβ+183Os5/2−
184Ir77107183.957476(30)3.09(3) hβ+184Os5−
184m1Ir225.65(11) keV470(30) μsIT184Ir3+
184m2Ir328.40(24) keV350(90) nsIT184Ir7+
185Ir77108184 956698(30)14.4(1) hβ+185Os5/2−
185mIr2197(23) keV120(20) nsIT185Ir(23/2,25/2)#
186Ir77109185.957947(18)16.64(3) hβ+186Os5+
186mIr0.8(4) keV1.92(5) hβ+ (~75%)186Os2−
IT (~25%)186Ir
187Ir77110186.957542(30)10.5(3) hβ+187Os3/2+
187m1Ir186.16(4) keV30.3(6) msIT187Ir9/2−
187m2Ir433.75(6) keV152(12) nsIT187Ir11/2−
187m3Ir2487.7(4) keV1.8(5) μsIT187Ir29/2−
188Ir77111187.958835(10)41.5(5) hβ+188Os1−
188mIr964(23) keV4.15(15) msIT188Ir11−#
189Ir77112188.958723(14)13.2(1) dEC189Os3/2+
189m1Ir372.17(4) keV13.3(3) msIT189Ir11/2−
189m2Ir2332.8(3) keV3.7(2) msIT189Ir25/2+
190Ir77113189.9605434(15)11.7511(20) d [8] EC190Os4−
β+ (<0.002%) [8]
190m1Ir26.1(1) keV1.120(3) hIT190Ir1−
190m2Ir36.154(25) keV>2 μsIT190Ir4+
190m3Ir376.4(1) keV3.087(12) hEC (91.4%)190Os11−
IT (8.6%)190Ir
191Ir77114190.9605915(14) Observationally Stable [n 11] 3/2+0.373(2)
191m1Ir171.29(4) keV4.899(23) sIT191Ir11/2−
191m2Ir2101.0(9) keV5.7(4) sIT191Ir31/2(+)
192Ir 77115191.9626024(14)73.820(14) dβ (95.24%)192Pt4+
EC (4.76%)192Os
192m1Ir56.720(5) keV1.45(5) minIT (99.98%)192Ir1−
β (0.0175%)192Pt
192m2Ir168.14(12) keV241(9) yIT192Ir(11−)
193Ir77116192.9629238(14)Observationally Stable [n 12] 3/2+0.627(2)
193m1Ir80.238(6) keV10.53(4) dIT193Ir11/2−
193m2Ir2278.9(5) keV124.8(21) μsIT193Ir31/2+
194Ir77117193.9650757(14)19.35(7) hβ194Pt1−
194m1Ir147.072(2) keV31.85(24) msIT194Ir4+
194m2Ir370(70) keV171(11) dβ194Pt(11−)
195Ir77118194.9659769(14)2.29(17) hβ195Pt3/2+
195m1Ir100(5) keV3.74(7) hβ195Pt11/2−
195m2Ir2354(6) keV4.4(6) μsIT195Ir(27/2+)
196Ir77119195.968400(41)52.0(11) sβ196Pt(1,2−)
196mIr210(40) keV1.40(2) hβ196Pt11−#
197Ir77120196.969657(22)5.8(5) minβ197Pt3/2+
197m1Ir115(5) keV8.9(3) minβ197Pt11/2−
197m2Ir1700(500)# keV30(8) μsIT197Ir
197m3Ir2800(500)# keV15(9) μsIT197Ir
198Ir77121197.97240(22)#8.7(4) sβ198Pt1−
199Ir77122198.973807(44)7(5) sβ199Pt3/2+#
200Ir77123199.97684(21)#43(6) sβ200Pt(2-, 3-)
201Ir77124200.97870(22)#21(5) sβ201Pt(3/2+)
202Ir77125201.98214(32)#11(3) sβ202Pt(2-)
202mIr2600(300)# keV3.4(6) μsIT202Ir
203Ir77126202.98457(43)#7# s
[>300 ns]
3/2+#
203mIr2140(50)# keV798(350) nsIT203Ir
204Ir77127203.98973(43)#2# s
[>300 ns]
3/2+#
205Ir77125204.99399(54)#1# s
[>300 ns]
3/2+#
This table header & footer:
  1. mIr  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    α: Alpha decay
    β+: Positron emission
    EC: Electron capture
    β: Beta decay
    IT: Isomeric transition
    p: Proton emission
  6. Bold italics symbol as daughter  Daughter product is nearly stable.
  7. Bold symbol as daughter  Daughter product is stable.
  8. () spin value  Indicates spin with weak assignment arguments.
  9. Discovery of this isotope is unconfirmed
  10. 1 2 Order of ground state and isomer is uncertain.
  11. Believed to undergo α decay to 187Re [9] [10]
  12. Believed to undergo α decay to 189Re [9]

Iridium-192

Iridium-192 (symbol 192Ir) is a radioactive isotope of iridium, with a half-life of 73.83 days. [11] It decays by emitting beta (β) particles and gamma (γ) radiation. About 96% of 192Ir decays occur via emission of β and γ radiation, leading to 192Pt. Some of the β particles are captured by other 192Ir nuclei, which are then converted to 192Os. Electron capture is responsible for the remaining 4% of 192Ir decays. [12] Iridium-192 is normally produced by neutron activation of natural-abundance iridium metal. [13]

Iridium-192 is a very strong gamma ray emitter, with a gamma dose-constant of approximately 1.54 μSv·h−1·MBq −1 at 30 cm, and a specific activity of 341 TBq·g−1 (9.22 kCi·g−1). [14] [15] There are seven principal energy packets produced during its disintegration process ranging from just over 0.2 to about 0.6  MeV.

The 192m2Ir isomer is unusual, both for its long half-life for an isomer, and that said half-life greatly exceeds that of the ground state of the same isotope.

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Iridium". CIAAW. 2017.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (8): 140–1–140–7. arXiv: 1908.11458 . Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. ISSN   1434-601X. S2CID   201664098.
  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. 1 2 Drummond, M. C.; O'Donnell, D.; Page, R. D.; Joss, D. T.; Capponi, L.; Cox, D. M.; Darby, I. G.; Donosa, L.; Filmer, F.; Grahn, T.; Greenlees, P. T.; Hauschild, K.; Herzan, A.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Lopez-Martens, A.; Mistry, A. K.; Nieminen, P.; Peura, P.; Rahkila, P.; Rinta-Antila, S.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Sayğı, B.; Scholey, C.; Simpson, J.; Sorri, J.; Thornthwaite, A.; Uusitalo, J. (16 June 2014). "α decay of the π h 11 / 2 isomer in Ir 164". Physical Review C. 89 (6): 064309. Bibcode:2014PhRvC..89f4309D. doi:10.1103/PhysRevC.89.064309. ISSN   0556-2813 . Retrieved 21 June 2023.
  7. Hilton, Joshua Ben. "Decays of new nuclides 169Au, 170Hg, 165Pt and the ground state of 165Ir discovered using MARA". University of Liverpool. ProQuest   2448649087 . Retrieved 21 June 2023.
  8. 1 2 Janiak, Ł.; Gierlik, M.; Kosinski, T.; Matusiak, M.; Madejowski, G.; Wronka, S.; Rzadkiewicz, J. (2024). "Half-life of 190Ir". Physical Review C. 110 (014306). doi:10.1103/PhysRevC.110.014306.
  9. 1 2 Danevich, F. A.; Andreotti, E.; Hult, M.; Marissens, G.; Tretyak, V. I.; Yuksel, A. (2012). "Search for α decay of 151Eu to the first excited level of 147Pm using underground γ-ray spectrometry". European Physical Journal A . 48 (157): 157. arXiv: 1301.3465 . Bibcode:2012EPJA...48..157D. doi:10.1140/epja/i2012-12157-7. S2CID   118657922.
  10. Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (8): 140–1–140–7. arXiv: 1908.11458 . Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. ISSN   1434-601X. S2CID   201664098.
  11. "Radioisotope Brief: Iridium-192 (Ir-192)" . Retrieved 20 March 2012.
  12. Baggerly, Leo L. (1956). The radioactive decay of Iridium-192 (PDF) (Ph.D. thesis). Pasadena, Calif.: California Institute of Technology. pp. 1, 2, 7. doi:10.7907/26VA-RB25.
  13. "Isotope Supplier: Stable Isotopes and Radioisotopes from ISOFLEX - Iridium-192". www.isoflex.com. Retrieved 2017-10-11.
  14. Delacroix, D; Guerre, J P; Leblanc, P; Hickman, C (2002). Radionuclide and Radiation Protection Data Handbook (PDF). Radiation Protection Dosimetry. Vol. 98, no. 1 (2nd ed.). Ashford, Kent: Nuclear Technology Publishing. pp. 9–168. doi:10.1093/OXFORDJOURNALS.RPD.A006705. ISBN   1870965876. PMID   11916063. S2CID   123447679. Archived from the original (PDF) on 2019-08-22.
  15. Unger, L M; Trubey, D K (May 1982). Specific Gamma-Ray Dose Constants for Nuclides Important to Dosimetry and Radiological Assessment (PDF) (Report). Oak Ridge National Laboratory. Archived from the original (PDF) on 22 March 2018.