Isotopes of berkelium

Last updated
Isotopes of berkelium  (97Bk)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
245Bk synth 4.94 d ε 245Cm
α 241Am
246Bksynth1.8 dα 242Am
β+ 246Cm
247Bksynth1380 yα 243Am
248Bksynth>9 y [2] α 244Am
249Bksynth330 d β 249Cf
α 245Am
SF

Berkelium (97Bk) is an artificial element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 243Bk in 1949. There are twenty known radioisotopes, from 233Bk and 233Bk to 253Bk (except 235Bk and 237Bk), and six nuclear isomers. The longest-lived isotope is 247Bk with a half-life of 1,380 years.

Contents

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da) [3]
[n 2] [n 3]
Half-life [1]
Decay
mode
[1]
[n 4]
Daughter
isotope

Spin and
parity [1]
[n 5] [n 6]
Excitation energy [n 6]
233Bk97136233.05665(25)#40(30) s α 229Am3/2-#
β+?233Cm
234Bk97137234.05732(16)#20(5) sα (>80%)230Am3-#
β+ (<20%)234Cm
β+, SF? [4] (various)
236Bk97139236.05748(39)#26(10) sβ+ (99.96%)236Cm4+#
β+, SF (0.04%)(various)
α?232Am
238Bk97141238.05820(28)#2.40(8) minβ+ (99.95%)238Cm1#
β+, SF (0.048%)(various)
α?234Am
239Bk97142239.05824(22)#100# sβ+239Cm(7/2+)
α?235Am
SF?(various)
240Bk97143240.05976(16)#4.8(8) minβ+?240Cm7−#
β+, SF (0.0020%)(various)
α?236Am
241Bk97144241.06010(18)#4.6(4) minβ+?241Cm(7/2+)
α?237Am
242Bk97145242.06198(22)#7.0(13) minβ+242Cm3+#
β+, SF (<3×10−5%)(various)
α?238Am
242mBk2000(200)# keV600(100) nsSF(various)
IT?242Bk
243Bk97146243.0630059(49)4.6(2) hβ+ (99.85%)243Cm3/2−
α (.15%)239Am
244Bk97147244.065179(15)5.02(3) hβ+?244Cm4−
α (0.006%)240Am
244mBk1500(500)# keV820(60) nsSF(various)
IT?244Bk
245Bk97148245.0663598(19)4.95(3) d EC (99.88%)245Cm3/2−
α (.12%)241Am
246Bk97149246.068671(64)1.80(2) dβ+246Cm2(−)
α?242Am
247Bk97150247.0703059(56)1.38(25)×103 yα243Am3/2−
SF?(various)
248Bk97151248.073142(54)>9 yα?244Am6+#
EC?248Cm
248mBk−20(50) keV [n 7] 23.7(2) hβ (70%)248Cf1(−)
EC (30%)248Cm
α?244Am
249Bk97152249.0749831(13)327.2(3) dβ249Cf7/2+
α (.00145%)245Am
SF (4.7×10−8%)(various)
249mBk8.777(14) keV300 μsIT249Bk3/2−
250Bk97153250.0783172(31)3.212(5) hβ250Cf2−
250m1Bk35.59(10) keV29(1) μsIT250Bk4+
250m2Bk85.6(16) keV213(8) μsIT250Bk7+
251Bk97154251.080761(12)55.6(11) minβ251Cf(3/2−)
251mBk35.5(13) keV58(4) μsIT251Bk(7/2+)
252Bk97155252.08431(22)#1.8(5) minβ?252Cf
α?248Am
253Bk97156253.08688(39)#60# minβ?253Cf3/2-#
This table header & footer:
  1. mBk  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    EC: Electron capture
    SF: Spontaneous fission
  5. () spin value  Indicates spin with weak assignment arguments.
  6. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  7. Order of ground state and isomer is uncertain. [1] [5]

Actinides vs fission products

Actinides [6] by decay chain Half-life
range (a)
Fission products of 235U by yield [7]
4n 4n + 1 4n + 2 4n + 3 4.5–7%0.04–1.25%<0.001%
228 Ra 4–6 a 155 Euþ
248 Bk [8] > 9 a
244 Cmƒ 241 Puƒ 250 Cf 227 Ac 10–29 a 90 Sr 85 Kr 113m Cdþ
232 Uƒ 238 Puƒ 243 Cmƒ 29–97 a 137 Cs 151 Smþ 121m Sn
249 Cfƒ 242m Amƒ141–351 a

No fission products have a half-life
in the range of 100 a–210 ka ...

241 Amƒ 251 Cfƒ [9] 430–900 a
226 Ra 247 Bk1.3–1.6 ka
240 Pu 229 Th 246 Cmƒ 243 Amƒ4.7–7.4 ka
245 Cmƒ 250 Cm8.3–8.5 ka
239 Puƒ24.1 ka
230 Th 231 Pa32–76 ka
236 Npƒ 233 Uƒ 234 U 150–250 ka 99 Tc 126 Sn
248 Cm 242 Pu 327–375 ka 79 Se
1.53 Ma 93 Zr
237 Npƒ 2.1–6.5 Ma 135 Cs 107 Pd
236 U 247 Cmƒ 15–24 Ma 129 I
244 Pu80 Ma

... nor beyond 15.7 Ma [10]

232 Th 238 U 235 Uƒ№0.7–14.1 Ga

Related Research Articles

Protactinium (91Pa) has no stable isotopes. The four naturally occurring isotopes allow a standard atomic weight to be given.

Actinium (89Ac) has no stable isotopes and no characteristic terrestrial isotopic composition, thus a standard atomic weight cannot be given. There are 34 known isotopes, from 203Ac to 236Ac, and 7 isomers. Three isotopes are found in nature, 225Ac, 227Ac and 228Ac, as intermediate decay products of, respectively, 237Np, 235U, and 232Th. 228Ac and 225Ac are extremely rare, so almost all natural actinium is 227Ac.

Radium (88Ra) has no stable or nearly stable isotopes, and thus a standard atomic weight cannot be given. The longest lived, and most common, isotope of radium is 226Ra with a half-life of 1600 years. 226Ra occurs in the decay chain of 238U. Radium has 34 known isotopes from 201Ra to 234Ra.

Francium (87Fr) has no stable isotopes. A standard atomic weight cannot be given. Its most stable isotope is 223Fr with a half-life of 22 minutes, occurring in trace quantities in nature as an intermediate decay product of 235U.

There are 39 known isotopes of radon (86Rn), from 193Rn to 231Rn; all are radioactive. The most stable isotope is 222Rn with a half-life of 3.823 days, which decays into 218
Po
. Six isotopes of radon, 217, 218, 219, 220, 221, 222Rn, occur in trace quantities in nature as decay products of, respectively, 217At, 218At, 223Ra, 224Ra, 225Ra, and 226Ra. 217Rn and 221Rn are produced in rare branches in the decay chain of trace quantities of 237Np; 222Rn is an intermediate step in the decay chain of 238U; 219Rn is an intermediate step in the decay chain of 235U; and 220Rn occurs in the decay chain of 232Th.

There are 42 isotopes of polonium (84Po). They range in size from 186 to 227 nucleons. They are all radioactive. 210Po with a half-life of 138.376 days has the longest half-life of any naturally-occurring isotope of polonium and is the most common isotope of polonium. It is also the most easily synthesized polonium isotope. 209Po, which does not occur naturally, has the longest half-life of all isotopes of polonium at 124 years. 209Po can be made by using a cyclotron to bombard bismuth with protons, as can 208Po.

Natural hafnium (72Hf) consists of five observationally stable isotopes (176Hf, 177Hf, 178Hf, 179Hf, and 180Hf) and one very long-lived radioisotope, 174Hf, with a half-life of 7.0×1016 years. In addition, there are 34 known synthetic radioisotopes, the most stable of which is 182Hf with a half-life of 8.9×106 years. This extinct radionuclide is used in hafnium–tungsten dating to study the chronology of planetary differentiation.

Naturally occurring terbium (65Tb) is composed of one stable isotope, 159Tb. Thirty-seven radioisotopes have been characterized, with the most stable being 158Tb with a half-life of 180 years, 157Tb with a half-life of 71 years, and 160Tb with a half-life of 72.3 days. All of the remaining radioactive isotopes have half-lives that are less than 6.907 days, and the majority of these have half-lives that are less than 24 seconds. This element also has 27 meta states, with the most stable being 156m1Tb, 154m2Tb and 154m1Tb.

Promethium (61Pm) is an artificial element, except in trace quantities as a product of spontaneous fission of 238U and 235U and alpha decay of 151Eu, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was first synthesized in 1945.

Naturally occurring praseodymium (59Pr) is composed of one stable isotope, 141Pr. Thirty-eight radioisotopes have been characterized with the most stable being 143Pr, with a half-life of 13.57 days and 142Pr, with a half-life of 19.12 hours. All of the remaining radioactive isotopes have half-lives that are less than 5.985 hours and the majority of these have half-lives that are less than 33 seconds. This element also has 15 meta states with the most stable being 138mPr, 142mPr and 134mPr.

<span class="mw-page-title-main">Isotopes of lanthanum</span> Nuclides with atomic number of 57 but with different mass numbers

Naturally occurring lanthanum (57La) is composed of one stable (139La) and one radioactive (138La) isotope, with the stable isotope, 139La, being the most abundant (99.91% natural abundance). There are 39 radioisotopes that have been characterized, with the most stable being 138La, with a half-life of 1.02×1011 years; 137La, with a half-life of 60,000 years and 140La, with a half-life of 1.6781 days. The remaining radioactive isotopes have half-lives that are less than a day and the majority of these have half-lives that are less than 1 minute. This element also has 12 nuclear isomers, the longest-lived of which is 132mLa, with a half-life of 24.3 minutes. Lighter isotopes mostly decay to isotopes of barium and heavy ones mostly decay to isotopes of cerium. 138La can decay to both.

Antimony (51Sb) occurs in two stable isotopes, 121Sb and 123Sb. There are 35 artificial radioactive isotopes, the longest-lived of which are 125Sb, with a half-life of 2.75856 years; 124Sb, with a half-life of 60.2 days; and 126Sb, with a half-life of 12.35 days. All other isotopes have half-lives less than 4 days, most less than an hour.

Indium (49In) consists of two primordial nuclides, with the most common (~ 95.7%) nuclide (115In) being measurably though weakly radioactive. Its spin-forbidden decay has a half-life of 4.41×1014 years, much longer than the currently accepted age of the Universe.

Naturally occurring rhodium (45Rh) is composed of only one stable isotope, 103Rh. The most stable radioisotopes are 101Rh with a half-life of 3.3 years, 102Rh with a half-life of 207 days, and 99Rh with a half-life of 16.1 days. Thirty other radioisotopes have been characterized with atomic weights ranging from 88.949 u (89Rh) to 121.943 u (122Rh). Most of these have half-lives that are less than an hour except 100Rh and 105Rh. There are also numerous meta states with the most stable being 102mRh (0.141 MeV) with a half-life of about 3.7 years and 101mRh (0.157 MeV) with a half-life of 4.34 days.

Arsenic (33As) has 32 known isotopes and at least 10 isomers. Only one of these isotopes, 75As, is stable; as such, it is considered a monoisotopic element. The longest-lived radioisotope is 73As with a half-life of 80 days.

Naturally occurring manganese (25Mn) is composed of one stable isotope, 55Mn. Twenty-seven radioisotopes have been characterized, with the most stable being 53Mn with a half-life of 3.7 million years, 54Mn with a half-life of 312.3 days, and 52Mn with a half-life of 5.591 days. All of the remaining radioactive isotopes have half-lives that are less than 3 hours and the majority of these have half-lives that are less than a minute. This element also has seven meta states.

Naturally occurring vanadium (23V) is composed of one stable isotope 51V and one radioactive isotope 50V with a half-life of 2.71×1017 years. 24 artificial radioisotopes have been characterized (in the range of mass number between 40 and 65) with the most stable being 49V with a half-life of 330 days, and 48V with a half-life of 15.9735 days. All of the remaining radioactive isotopes have half-lives shorter than an hour, the majority of them below 10 seconds, the least stable being 42V with a half-life shorter than 55 nanoseconds, with all of the isotopes lighter than it, and none of the heavier, have unknown half-lives. In 4 isotopes, metastable excited states were found (including 2 metastable states for 60V), which adds up to 5 meta states.

Naturally occurring scandium (21Sc) is composed of one stable isotope, 45Sc. Twenty-five radioisotopes have been characterized, with the most stable being 46Sc with a half-life of 83.8 days, 47Sc with a half-life of 3.35 days, and 48Sc with a half-life of 43.7 hours and 44Sc with a half-life of 3.97 hours. All the remaining isotopes have half-lives that are less than four hours, and the majority of these have half-lives that are less than two minutes, the least stable being proton unbound 39Sc with a half-life shorter than 300 nanoseconds. This element also has 13 meta states with the most stable being 44m2Sc.

Curium (96Cm) is an artificial element with an atomic number of 96. Because it is an artificial element, a standard atomic weight cannot be given, and it has no stable isotopes. The first isotope synthesized was 242Cm in 1944, which has 146 neutrons.

Einsteinium (99Es) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be discovered was 253Es in 1952. There are 18 known radioisotopes from 240Es to 257Es, and 4 nuclear isomers. The longest-lived isotope is 252Es with a half-life of 471.7 days, or around 1.293 years.

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. doi:10.1016/0029-5582(65)90719-4.
  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  4. Kaji, D.; Morimoto, K.; Haba, H.; Ideguchi, E.; Koura, H.; Morita, K. (2016). "Decay Properties of New Isotopes 234Bk and 230Am, and Even–Even Nuclides 234Cm and 230Pu" (PDF). Journal of the Physical Society of Japan. 84 (15002): 015002. Bibcode:2016JPSJ...85a5002K. doi:10.7566/JPSJ.85.015002.
  5. "Adopted Levels for 248Bk". NNDC Chart of Nuclides.
  6. Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here.
  7. Specifically from thermal neutron fission of uranium-235, e.g. in a typical nuclear reactor.
  8. Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4.
    "The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk248 with a half-life greater than 9 [years]. No growth of Cf248 was detected, and a lower limit for the β half-life can be set at about 104 [years]. No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 [years]."
  9. This is the heaviest nuclide with a half-life of at least four years before the "sea of instability".
  10. Excluding those "classically stable" nuclides with half-lives significantly in excess of 232Th; e.g., while 113mCd has a half-life of only fourteen years, that of 113Cd is eight quadrillion years.