Isotopes of berkelium

Last updated

Isotopes of berkelium  (97Bk)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
245Bk synth 4.94 d ε 245Cm
α 241Am
246Bksynth1.80 d β+ 246Cm
α 242Am
247Bksynth1380 yα 243Am
248Bksynth>9 y [2] α 244Am
249Bksynth327.2 d β 249Cf
α 245Am
SF

Berkelium (97Bk) is an artificial element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 243Bk in 1949. There are nineteen known radioisotopes, from 233Bk to 253Bk (except 235Bk and 237Bk), and seven nuclear isomers. The longest-lived isotope known is 247Bk with a half-life of 1,380 years; however 248Bk, which has not been observed to decay, may live longer.

Contents

The isotope commonly used in study, though, is 249Bk as is it the only that can be usefully extracted from reactor actinides and the only ever available in weighable quantity.

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [3]
[n 2] [n 3]
Half-life [1]
Decay
mode
[1]
[n 4]
Daughter
isotope

Spin and
parity [1]
[n 5] [n 6]
Excitation energy [n 6]
233Bk97136233.05665(25)#40(30) s α (82%)229Am3/2−#
β+? (18%)233Cm
234Bk97137234.05732(16)#20(5) sα (>80%)230Am3−#
β+ (<20%)234Cm
236Bk97139236.05748(39)#26(10) sβ+ (99.96%)236Cm4+#
β+, SF (0.04%)(various)
238Bk97141238.05820(28)#2.40(8) minβ+ (99.95%)238Cm1#
β+, SF (0.048%)(various)
239Bk97142239.05824(22)#100# sβ+239Cm(7/2+)
240Bk97143240.05976(16)#4.8(8) minβ+?240Cm7−#
α?236Am
β+, SF (0.0013%)(various)
241Bk97144241.06010(18)#4.6(4) minβ+241Cm(7/2+)
242Bk97145242.06200(14)#7.0(13) minβ+242Cm3+#
β+, SF (<3×10−5%)(various)
242mBk2000(200)# keV600(100) nsSF(various)
243Bk97146243.063006(5)4.6(2) hβ+ (99.85%)243Cm3/2−
α (0.15%)239Am
244Bk97147244.065179(15)5.02(3) hβ+ (99.994%) [n 7] 244Cm4−
α (0.006%)240Am
244mBk1500(500)# keV820(60) nsSF(various)
245Bk97148245.0663598(19)4.95(3) d EC (99.88%)245Cm3/2−
α (0.12%)241Am
246Bk97149246.06867(6)1.80(2) dβ+246Cm2(−)
247Bk97150247.070306(6)1.38(25)×103 yα243Am3/2−
SF?(various)
248Bk97151248.07314(5)>9 yα?244Am6+#
EC?248Cm
β?248Cf
248mBk [n 8] −20(50) keV23.7(2) hβ (70%)248Cf1(−)
EC (30%)248Cm
249Bk [n 9] 97152249.0749831(13)327.2(3) dβ249Cf7/2+
α (0.00145%)245Am
SF (4.7×10−8%)(various)
249mBk8.777(14) keV300 μsIT249Bk3/2−
250Bk97153250.078317(3)3.212(5) hβ250Cf2−
250m1Bk35.59(10) keV29(1) μsIT250Bk4+
250m2Bk85.6(16) keV213(8) μsIT250Bk7+
251Bk97154251.080761(12)55.6(11) minβ251Cf(3/2−)
251mBk35.5(13) keV58(4) μsIT251Bk(7/2+)
252Bk97155252.08431(22)#1.8(5) minβ252Cf
253Bk97156253.08688(39)#60# minβ?253Cf3/2-#
This table header & footer:
  1. mBk  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    EC: Electron capture
    SF: Spontaneous fission
  5. () spin value  Indicates spin with weak assignment arguments.
  6. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  7. NUBASE2020 question-marks this decay, but it has been observed directly, see e.g. the IAEA Chart of Nuclides.
  8. Order of ground state and isomer is uncertain.
  9. Most common isotope

Actinides vs fission products

Actinides [4] by decay chain Half-life
range (a)
Fission products of 235U by yield [5]
4n 4n + 1 4n + 2 4n + 3 4.5–7%0.04–1.25%<0.001%
228 Ra 4–6 a 155 Euþ
248 Bk [6] > 9 a
244 Cmƒ 241 Puƒ 250 Cf 227 Ac 10–29 a 90 Sr 85 Kr 113m Cdþ
232 Uƒ 238 Puƒ 243 Cmƒ 29–97 a 137 Cs 151 Smþ 121m Sn
249 Cfƒ 242m Amƒ141–351 a

No fission products have a half-life
in the range of 100 a–210 ka ...

241 Amƒ 251 Cfƒ [7] 430–900 a
226 Ra 247 Bk1.3–1.6 ka
240 Pu 229 Th 246 Cmƒ 243 Amƒ4.7–7.4 ka
245 Cmƒ 250 Cm8.3–8.5 ka
239 Puƒ24.1 ka
230 Th 231 Pa32–76 ka
236 Npƒ 233 Uƒ 234 U 150–250 ka 99 Tc 126 Sn
248 Cm 242 Pu 327–375 ka 79 Se
1.33 Ma 135 Cs
237 Npƒ 1.61–6.5 Ma 93 Zr 107 Pd
236 U 247 Cmƒ 15–24 Ma 129 I
244 Pu80 Ma

... nor beyond 15.7 Ma [8]

232 Th 238 U 235 Uƒ№0.7–14.1 Ga

References

  1. 1 2 3 4 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. doi:10.1016/0029-5582(65)90719-4.
  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  4. Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here.
  5. Specifically from thermal neutron fission of uranium-235, e.g. in a typical nuclear reactor.
  6. Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4.
    "The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk248 with a half-life greater than 9 [years]. No growth of Cf248 was detected, and a lower limit for the β half-life can be set at about 104 [years]. No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 [years]."
  7. This is the heaviest nuclide with a half-life of at least four years before the "sea of instability".
  8. Excluding those "classically stable" nuclides with half-lives significantly in excess of 232Th; e.g., while 113mCd has a half-life of only fourteen years, that of 113Cd is eight quadrillion years.