Isotopes of antimony

Last updated

Isotopes of antimony  (51Sb)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
121Sb57.2% stable
123Sb42.8%stable
125Sb synth 2.7576 y β 125Te
Standard atomic weight Ar°(Sb)

Antimony (51Sb) occurs in two stable isotopes, 121Sb and 123Sb. There are 37 artificial radioactive isotopes, the longest-lived of which are 125Sb, with a half-life of 2.75856 years; 124Sb, with half-life 60.2 days; and 126Sb, with half-life 12.35 days. All other isotopes have half-lives less than 4 days, most less than an hour. There are also many isomers, the longest-lived of which is 120m1Sb with half-life 5.76 days.

Except for beryllium, antimony is the lightest element observed to have isotopes capable of alpha decay; 104Sb is seen to undergo this mode of decay. Some light elements, namely those near 8Be, have isotopes with delayed alpha emission (following proton or beta emission) as a rare branch.

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [4]
[n 2] [n 3]
Half-life [1]
Decay
mode
[1]
[n 4]
Daughter
isotope

[n 5] [n 6]
Spin and
parity [1]
[n 7] [n 8]
Natural abundance (mole fraction)
Excitation energy [n 8] Normal proportion [1] Range of variation
104Sb5153103.93634(11)#470(130) ms β+?104Sn
p (<7%)103Sn
β+, p (<7%)103In
α?100In
105Sb5154104.931277(23)1.12(16) sβ+ (>99.9%)105Sn(5/2+)
p (<0.1%)104Sn
β+, p?104In
106Sb5155105.9286380(80)0.6(2) sβ+106Sn(2+)
106mSb103.5(3) keV226(14) ns IT 106Sb(4+)
107Sb5156106.9241506(45)4.0(2) sβ+107Sn5/2+#
108Sb5157107.9222267(59)7.4(3) sβ+108Sn(4+)
109Sb5158108.9181412(57)17.2(5) sβ+109Sn5/2+#
110Sb5159109.9168543(64)23.6(3) sβ+110Sn(3+)
111Sb5160110.9132182(95)75(1) sβ+111Sn(5/2+)
112Sb5161111.912400(19)53.5(6) sβ+112Sn(3+)
112mSb825.9(4) keV536(22) nsIT112Sb(8−)
113Sb5162112.909375(18)6.67(7) minβ+113Sn5/2+
114Sb5163113.909289(21)3.49(3) minβ+114Sn3+
114mSb495.5(7) keV219(12) μsIT114Sb(8−)
115Sb5164114.906598(17)32.1(3) minβ+115Sn5/2+
115mSb2796.26(9) keV159(3) nsIT115Sb(19/2)−
116Sb5165115.9067927(55)15.8(8) minβ+116Sn3+
116m1Sb93.99(5) keV194(4) nsIT116Sb1+
116m2Sb390(40) keV60.3(6) minβ+116Sn8−
117Sb5166116.9048415(91)2.97(2) hβ+117Sn5/2+
117m1Sb3130.76(19) keV355(17) μsIT117Sb(25/2)+
117m2Sb3230.7(2) keV290(5) nsIT117Sb(23/2−)
118Sb5167117.9055322(32)3.6(1) minβ+118Sn1+
118m1Sb50.814(21) keV20.6(6) μsIT118Sb3+
118m2Sb250(6) keV5.01(3) hβ+118Sn8−
119Sb5168118.9039441(75)38.19(22) h EC 119Sn5/2+
119m1Sb2553.6(3) keV130(3) nsIT119Sb19/2−
119m2Sb2841.7(4) keV835(81) msIT119Sb25/2+
120Sb5169119.9050803(77)15.89(4) minβ+120Sn1+
120m1Sb [n 9] 0(100)# keV5.76(2) dβ+120Sn8−
120m2Sb78.16(5) keV246(2) nsIT120Sb(3+)
120m3Sb2328(100)# keV400(8) nsIT120Sb13+
121Sb [n 10] 5170120.9038114(27)Stable5/2+0.5721(5)
121mSb2751(17) keV179(6) μsIT121Sb(25/2+)
122Sb5171121.9051693(27)2.7238(2) dβ (97.59%)122Te2−
β+ (2.41%)122Sn
122m1Sb61.4131(5) keV1.86(8) μsIT122Sb3+
122m2Sb137.4726(8) keV0.53(3) msIT122Sb5+
122m3Sb163.5591(17) keV4.191(3) minIT122Sb8−
123Sb [n 10] 5172122.9042153(15)Stable7/2+0.4279(5)
123m1Sb2237.8(3) keV214(3) nsIT123Sb19/2−
123m2Sb2613.4(4) keV65(1) μsIT123Sb23/2+
124Sb5173123.9059371(15)60.20(3) dβ124Te3−
124m1Sb10.8627(8) keV93(5) sIT (75%)124Sb5+
β (25%)124Te
124m2Sb36.8440(14) keV20.2(2) minIT124m1Sb(8)−
124m3Sb40.8038(7) keV3.2(3) μsIT124Sb(3+)
125Sb5174124.9052543(27)2.7576(11) yβ125Te7/2+
125m1Sb1971.25(20) keV4.1(2) μsIT125Sb15/2−
125m2Sb2112.1(3) keV28.5(5) μsIT125Sb19/2−
125m3Sb2471.0(4) keV277.0(64) nsIT125Sb(23/2)+
126Sb5175125.907253(34)12.35(6) dβ126Te8−
126m1Sb17.7(3) keV19.15(8) minβ (86%)126Te5+
IT (14%)126Sb
126m2Sb40.4(3) keV~11 sIT126m1Sb3−
126m3Sb104.6(3) keV553(5) nsIT126Sb3+
126m4Sb1810.7(17) keV90(16) nsIT126Sb(13+)
127Sb5176126.9069256(55)3.85(5) dβ127Te7/2+
127m1Sb1920.19(21) keV11.7(1) μsIT127Sb15/2−
127m2Sb2324.7(4) keV269(5) nsIT127Sb23/2+
128Sb5177127.909146(20)9.05(4) hβ128Te8−
128m1Sb [n 9] 10(6) keV10.41(18) minβ (96.4%)128Te5+
IT (3.6%)128Sb
128m2Sb1617.3(7) keV500(20) nsIT128Sb(11+)
128m3Sb1769.9(12) keV217(7) nsIT128Sb(13+)
129Sb5178128.909147(23)4.366(26) hβ129Te7/2+
129m1Sb1851.31(6) keV17.7(1) minβ (85%)129Te19/2−
IT (15%)129Sb
129m2Sb1861.06(5) keV2.23(17) μsIT129Sb15/2−
129m3Sb2139.4(3) keV0.89(3) μsIT129Sb23/2+
130Sb5179129.911663(15)39.5(8) minβ130Te8−
130m1Sb4.80(20) keV6.3(2) minβ130Te4+
130m2Sb84.67(4) keV800(100) nsIT130Sb6−
130m3Sb1508(1) keV600(15) nsIT130Sb(11+)
130m4Sb1544.7(5) keV1.25(1) μsIT130Sb(13+)
131Sb5180130.9119893(22)23.03(4) minβ131Te7/2+
131m1Sb1676.06(6) keV64.2(26) μsIT131Sb15/2−
131m2Sb1687.2(9) keV4.3(8) μsIT131Sb19/2−
131m3Sb2165.6(15) keV0.97(3) μsIT131Sb23/2+
132Sb5181131.9145141(29) [5] 2.79(7) minβ132Te(4)+
132m1Sb139.3(20) keV [5] 4.10(5) minβ132Te(8−)
132m2Sb254.5(3) keV102(4) nsIT132Sb(6−)
133Sb5182132.9152721(34)2.34(5) minβ133Te(7/2+)
133mSb4541(9) keV16.54(19) μsIT133Sb(21/2+)
134Sb5183133.9205373(33)674(4) msβ134Te(0-)
β, n?133Te
134mSb279(1) keV10.01(4) sβ (99.91%)134Te(7−)
β, n (0.088%)133Te
135Sb5184134.9251844(28)1.668(9) sβ (80.9%)135Te(7/2+)
β, n (19.1%)134Te
136Sb5185135.9307490(63)0.923(14) sβ (75.2%)136Te(1−)
β, n (24.7%)135Te
β, 2n (0.14%)134Te
136mSb269.3(5) keV570(5) nsIT136Sb(6−)
137Sb5186136.935523(56)497(21) msβ (51%)137Te7/2+#
β, n (49%)136Te
β, 2n?135Te
138Sb5187137.94133(32)#333(7) msβ, n (72%)137Te(3−)
β (28%)138Te
β, 2n?136Te
139Sb5188138.94627(43)#182(9) msβ, n (90%)138Te7/2+#
β (10%)139Te
β, 2n?137Te
140Sb5189139.95235(64)#170(6) msβ (69%)140Te(3−)
β, n (23%)139Te
β, 2n (7.6%)138Te
140mSb330(30)# keV41(8) μsIT140Sb(6−,7−)
141Sb5190140.95755(54)#103(29) msβ141Te7/2+#
β, n?140Te
β, 2n?139Te
142Sb5191141.96392(32)#80(50) msβ142Te
β, n?141Te
β, 2n?140Te
This table header & footer:
  1. mSb  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  5. Bold italics symbol as daughter  Daughter product is nearly stable.
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. 1 2 Order of ground state and isomer is uncertain.
  10. 1 2 Fission product

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Antimony". CIAAW. 1993.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. 1 2 Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv: 2403.04710 .