Isotopes of holmium

Last updated

Isotopes of holmium  (67Ho)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
163Ho synth 4570 y ε 163Dy
164Hosynth28.8 minε 164Dy
β 164Er
165Ho100% stable
166Hosynth26.812 hβ 166Er
166m1Hosynth1133 yβ 166Er
167Hosynth3.1 hβ 167Er
Standard atomic weight Ar°(Ho)
Holmium-166m1 oxide Holmium 166m oxide.png
Holmium-166m1 oxide

Natural holmium (67Ho) contains one observationally stable isotope, 165Ho. The known isotopes of holmium range from 140Ho to 175Ho. The primary decay mode before the stable 165Ho, is beta plus decay to dysprosium isotopes, and the primary mode after is beta minus decay to erbium isotopes.

Contents

Among the synthetic radioactive isotopes the most stable is 163Ho with a half-life of 4,570 years, the next most stable is 166Ho having a half-life of 26.812 hours, and others are under 4 hours. The isomeric nuclide 166m1Ho, however, has a half-life of 1,133 years, much the longest of the meta states.

Holmium-166 (ground state) has been studied for medical application. [4] [5]

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [6]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity [1]
[n 7] [n 4]
Isotopic
abundance
Excitation energy [n 4]
140Ho6773139.96853(54)#6(3) ms p 139Dy8+#
141Ho6774140.96311(43)#4.1(1) msp140Dy(7/2−)
141mHo66(2) keV7.3(3) μsp140Dy(1/2+)
142Ho6775141.96001(43)#400(100) ms β+ 142Dy(7−, 8+)
β+, p (?%)141Tb
p (?%)141Dy
143Ho6776142.95486(32)#300# ms
[>200 ns]
11/2−#
144Ho6777143.9521097(91)0.7(1) sβ+144Dy(5−)
β+, p (?%)143Tb
144mHo265.3(3) keV519(5) ns IT 144Ho(8+)
145Ho6778144.9472674(80)2.4(1) sβ+145Dy(11/2−)
146Ho6779145.9449935(71)3.32(22) sβ+146Dy(6−)
β+, p (?%)145Tb
147Ho6780146.9401423(54)5.8(4) sβ+147Dy(11/2−)
147mHo2687.1(4) keV315(30) nsIT147Ho(27/2−)
148Ho6781147.937744(90)2.2(11) sβ+148Dy(1+)
148m1Ho250(100)# keV9.49(12) sβ+ (99.92%)148Dy(5−)
β+, p (0.08%)147Tb
148m2Ho940(100)# keV2.36(6) msIT148m1Ho(10)+
149Ho6782148.933820(13)21.1(2) sβ+149Dy(11/2−)
149mHo48.80(20) keV56(3) sβ+149Dy(1/2+)
150Ho6783149.933498(15)76.8(18) sβ+150Dy(2)−
150m1Ho [n 8] 0(50) keV23.3(3) sβ+150Dy(9)+
150m2Ho7900(50) keV787(36) nsIT150Ho(28−)
151Ho6784150.9316982(89)35.2(1) sβ+ (78%)151Dy11/2−
α (22%)147Tb
151mHo41.0(2) keV47.2(13) sα (77%)147Tb1/2+
β+ (23%)151Dy
152Ho6785151.931718(13)161.8(3) sβ+ (88%)152Dy2−
α (12%)148Tb
152m1Ho160(3) keV49.8(2) sβ+ (89.2%)152Dy9+
α (10.8%)148Tb
152m2Ho3019.59(19) keV8.4(3) μsIT152Ho19−
153Ho6786152.9302067(54)2.01(3) minβ+ (99.95%)153Dy11/2−
α (0.051%)149Tb
153m1Ho68.7(3) keV9.3(5) minβ+ (99.82%)153Dy1/2+
α (0.18%)149Tb
153m2Ho2772.3(14) keV229(2) nsIT153Ho31/2+
154Ho6787153.9306068(88)11.76(19) minβ+ (99.98%)154Dy2−
α (0.019%)150Tb
154mHo243(28) keV3.10(14) minβ+154Dy8+
α (<0.001%)150Tb
IT (rare)154Ho
155Ho6788154.929103(19)48(2) minβ+155Dy5/2+
155mHo141.87(11) keV880(80) μsIT155Ho11/2−
156Ho6789155.929642(41)56(1) minβ+156Dy4−
156m1Ho52.37(30) keV9.5(15) sIT156Ho1−
156m2Ho230(50) keV7.6(3) minβ+ (75%)156Dy9+
IT (25%)156Ho
157Ho6790156.928252(25)12.6(2) minβ+157Dy7/2−
158Ho6791157.928945(29)11.3(4) minβ+158Dy5+
158m1Ho67.20(1) keV28(2) minIT (91%)158Ho2−
β+ (9%)158Dy
158m2Ho91.595(12) keV140(25) nsIT158Ho(2−)
158m3Ho180(70)# keV21.3(23) minβ+158Dy(9+)
159Ho6792158.9277187(33)33.05(11) minβ+159Dy7/2−
159mHo205.91(5) keV8.30(8) sIT159Ho1/2+
160Ho6793159.928736(16)25.6(3) minβ+160Dy5+
160m1Ho59.98(3) keV5.02(5) hIT (73%)160Ho2−
β+ (27%)160Dy
160m2Ho197(16) keV~3 sIT160Ho(9+)
161Ho6794160.9278618(23)2.48(5) h EC 161Dy7/2−
161mHo211.15(3) keV6.76(7) sIT161Ho1/2+
162Ho6795161.9291025(33)15.0(10) minβ+162Dy1+
162mHo105.87(6) keV67.0(7) minIT (62%)162Ho6−
β+ (38%)162Dy
163Ho6796162.92874026(74)4570(25) yEC163Dy7/2−
163m1Ho297.88(7) keV1.09(3) sIT163Ho1/2+
163m2Ho2109.4(4) keV800(150) nsIT163Ho(23/2+)
164Ho6797163.9302405(15)28.8(5) minEC (61%)164Dy1+
β (39%)164Er
164mHo139.78(7) keV36.6(3) minIT164Ho6−
165Ho6798164.93032912(84) Observationally Stable [n 9] 7/2−1.0000
165m1Ho361.675(11) keV1.512(4) μsIT165Ho3/2+
165m2Ho715.33(2) keV<100 nsIT165Ho7/2+
166Ho6799165.93229121(84)26.812(7) hβ166Er0−
166m1Ho5.969(12) keV1132.6(39) yβ166Er7−
166m2Ho190.9021(20) keV185(15) μsIT166Ho3+
167Ho67100166.9331403(56)3.1(1) hβ167Er7/2−
167mHo259.34(11) keV6.0(10) μsIT167Ho3/2+
168Ho67101167.935524(32)2.99(7) minβ168Er3+
168m1Ho59(1) keV132(4) sIT168Ho(6+)
168m2Ho143.43(17) keV>4 μsIT168Ho(1)−
168m3Ho192.57(20) keV108(11) nsIT168Ho1+
169Ho67102168.936880(22)4.72(10) minβ169Er7/2−
169mHo1386.2(4) keV118(6) μsIT169Ho(19/2+)
170Ho67103169.939627(54)2.76(5) minβ170Er(6+)
170mHo [n 8] 100(80) keV43(2) sβ170Er(1+)
171Ho67104170.94147(64)53(2) sβ171Er7/2−#
172Ho67105171.94473(21)#25(3) sβ172Er0+#
173Ho67106172.94702(32)#7.1(4) sβ173Er7/2−#
173mHo405(1) keV3.7(12) μsIT173Ho1/2+#
174Ho67107173.95076(32)#3.7(4) sβ174Er(8−)
175Ho67108174.95352(43)#1.88(55) sβ175Er7/2−#
176Ho67109175.95771(54)#1# s
[>300 ns]
4+#
177Ho67110176.96105(54)#1# s
[>550 ns]
β177Er7/2−#
178Ho67111177.96551(54)#750# ms
[>550 ns]
2+#
This table header & footer:
  1. mHo  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. 1 2 Order of ground state and isomer is uncertain.
  9. Believed to undergo α decay to 161Tb

See also

Daughter products other than holmium

References

  1. 1 2 3 4 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Holmium". CIAAW. 2021.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Suzuki, Yuka S (1998). "Biodistribution and kinetics of holmium-166-chitosan complex (DW-166HC) in rats and mice" (PDF). Journal of Nuclear Medicine. 39 (12): 2161–2166. PMID   9867162.
  5. Klaassen, Nienke J. M.; Arntz, Mark J.; Gil Arranja, Alexandra; Roosen, Joey; Nijsen, J. Frank W. (2019-08-05). "The various therapeutic applications of the medical isotope holmium-166: a narrative review". EJNMMI Radiopharmacy and Chemistry. 4 (1): 19. doi: 10.1186/s41181-019-0066-3 . ISSN   2365-421X. PMC   6682843 . PMID   31659560.
  6. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.