Isotopes of moscovium

Last updated
Isotopes of moscovium  (115Mc)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
286Mc synth 20 ms [1] α 282Nh
287Mcsynth38 msα 283Nh
288Mcsynth193 msα 284Nh
289Mcsynth250 ms [2] [3] α 285Nh
290Mcsynth650 ms [2] [3] α 286Nh

Moscovium (115Mc) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no known stable isotopes. The first isotope to be synthesized was 288Mc in 2004. There are five known radioisotopes from 286Mc to 290Mc. The longest-lived isotope is 290Mc with a half-life of 0.65 seconds.

Contents

List of isotopes

The isotopes undergo alpha decay into the corresponding isotope of nihonium, with half-lives increasing as neutron numbers increase.

Nuclide
Z N Isotopic mass (Da)
[n 1] [n 2]
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
286Mc [4] 11517120+98
−9
 ms
α282Nh
287Mc115172287.19070(52)#38+22
−10
 ms
[4]
α283Nh
288Mc115173288.19274(62)#193+15
−13
 ms
[4]
α284Nh
289Mc115174289.19363(89)#250+51
−35
 ms
[4]
α285Nh
290Mc [n 3] 115175290.19598(73)#650+490
−200
 ms
α286Nh
This table header & footer:
  1. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  2. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  3. Not directly synthesized, created as decay product of 294Ts

Nucleosynthesis

Chronology of isotope discovery
IsotopeYear discoveredDiscovery reaction
286Mc2021243Am(48Ca,5n)
287Mc2003243Am(48Ca,4n)
288Mc2003243Am(48Ca,3n)
289Mc2009249Bk(48Ca,4n) [2]
290Mc2009249Bk(48Ca,3n) [2]

Target-projectile combinations

The table below contains various combinations of targets and projectiles which could be used to form compound nuclei with Z = 115. Each entry is a combination for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.

TargetProjectileCNAttempt result
208Pb75As283McReaction yet to be attempted
209Bi76Ge285McReaction yet to be attempted
238U51V289McFailure to date
243Am48Ca291Mc [5] [6] Successful reaction
241Am48Ca289McPlanned reaction
243Am44Ca287McReaction yet to be attempted

Hot fusion

Hot fusion reactions are processes that create compound nuclei at high excitation energy (~40–50 MeV, hence "hot"), leading to a reduced probability of survival from fission. The excited nucleus then decays to the ground state via the emission of 3–5 neutrons. Fusion reactions utilizing 48Ca nuclei usually produce compound nuclei with intermediate excitation energies (~30–35 MeV) and are sometimes referred to as "warm" fusion reactions. This leads, in part, to relatively high yields from these reactions.

238U(51V,xn)289−xMc

There are strong indications that this reaction was performed in late 2004 as part of a uranium(IV) fluoride target test at the GSI. No reports have been published suggesting that no product atoms were detected, as anticipated by the team. [7]

243Am(48Ca,xn)291−xMc (x=2,3,4,5)

This reaction was first performed by the team in Dubna in July–August 2003. In two separate runs they were able to detect 3 atoms of 288Mc and a single atom of 287Mc. The reaction was studied further in June 2004 in an attempt to isolate the descendant 268Db from the 288Mc decay chain. After chemical separation of a +4/+5 fraction, 15 SF decays were measured with a lifetime consistent with 268Db. In order to prove that the decays were from dubnium-268, the team repeated the reaction in August 2005 and separated the +4 and +5 fractions and further separated the +5 fractions into tantalum-like and niobium-like ones. Five SF activities were observed, all occurring in the niobium-like fractions and none in the tantalum-like fractions, proving that the product was indeed isotopes of dubnium.

In a series of experiments between October 2010 – February 2011, scientists at the FLNR studied this reaction at a range of excitation energies. They were able to detect 21 atoms of 288Mc and one atom of 289Mc, from the 2n exit channel. This latter result was used to support the synthesis of tennessine. The 3n excitation function was completed with a maximum at ~8  pb. The data was consistent with that found in the first experiments in 2003.

This reaction was run again at five different energies in 2021 to test the new gas-filled separator at Dubna's SHE-factory. They detected 6 chains of 289Mc, 58 chains of 288Mc, and 2 chains of 287Mc. For the first time the 5n channel was observed with 2 atoms of 286Mc. [8]

Reaction yields

The table below provides cross-sections and excitation energies for hot fusion reactions producing moscovium isotopes directly. Data in bold represent maxima derived from excitation function measurements. + represents an observed exit channel.

ProjectileTargetCN2n3n4n5n
48Ca243Am291Mc3.7 pb, 39.0 MeV0.9 pb, 44.4 MeV

Theoretical calculations

Decay characteristics

Theoretical calculations using a quantum-tunneling model support the experimental alpha-decay half-lives. [9]

Evaporation residue cross sections

The table below contains various target-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.

MD = multi-dimensional; DNS = Di-nuclear system; σ = cross section

TargetProjectileCNChannel (product)σmaxModelRef
243Am48Ca291Mc3n (288Mc)3 pbMD [5]
243Am48Ca291Mc4n (287Mc)2 pbMD [5]
243Am48Ca291Mc3n (288Mc)1 pbDNS [6]
242Am48Ca290Mc3n (287Mc)2.5 pbDNS [6]
241Am48Ca289Mc4n (285Mc)1.04 pbDNS [10]

Related Research Articles

<span class="mw-page-title-main">Darmstadtium</span> Chemical element, symbol Ds and atomic number 110

Darmstadtium is a synthetic chemical element; it has symbol Ds and atomic number 110. It is extremely radioactive: the most stable known isotope, darmstadtium-281, has a half-life of approximately 14 seconds. Darmstadtium was first created in 1994 by the GSI Helmholtz Centre for Heavy Ion Research in the city of Darmstadt, Germany, after which it was named.

<span class="mw-page-title-main">Island of stability</span> Predicted set of isotopes of relatively more stable superheavy elements

In nuclear physics, the island of stability is a predicted set of isotopes of superheavy elements that may have considerably longer half-lives than known isotopes of these elements. It is predicted to appear as an "island" in the chart of nuclides, separated from known stable and long-lived primordial radionuclides. Its theoretical existence is attributed to stabilizing effects of predicted "magic numbers" of protons and neutrons in the superheavy mass region.

Unbibium, also known as element 122 or eka-thorium, is a hypothetical chemical element; it has placeholder symbol Ubb and atomic number 122. Unbibium and Ubb are the temporary systematic IUPAC name and symbol respectively, which are used until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table of the elements, it is expected to follow unbiunium as the second element of the superactinides and the fourth element of the 8th period. Similarly to unbiunium, it is expected to fall within the range of the island of stability, potentially conferring additional stability on some isotopes, especially 306Ubb which is expected to have a magic number of neutrons (184).

Nobelium (102No) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 254No in 1966. There are thirteen known radioisotopes, which are 249No to 260No and 262No, and many isomers. The longest-lived isotope is 259No with a half-life of 58 minutes. The longest-lived isomer is 251m1No with a half-life of 1.02 seconds.

Rutherfordium (104Rf) is a synthetic element and thus has no stable isotopes. A standard atomic weight cannot be given. The first isotope to be synthesized was either 259Rf in 1966 or 257Rf in 1969. There are 16 known radioisotopes from 253Rf to 270Rf and several isomers. The longest-lived isotope is 267Rf with a half-life of 48 minutes, and the longest-lived isomer is 263mRf with a half-life of 8 seconds.

Dubnium (105Db) is a synthetic element, thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 261Db in 1968. Thirteen radioisotopes are known, ranging from 255Db to 270Db, along with one isomer (257mDb); two more isomers have been reported but are unconfirmed. The longest-lived known isotope is 268Db with a half-life of 16 hours.

Seaborgium (106Sg) is a synthetic element and so has no stable isotopes. A standard atomic weight cannot be given. The first isotope to be synthesized was 263Sg in 1974. There are 13 known radioisotopes from 258Sg to 271Sg and 4 known isomers. The longest-lived isotope is 269Sg with a half-life of 14 minutes.

Bohrium (107Bh) is an artificial element. Like all artificial elements, it has no stable isotopes, and a standard atomic weight cannot be given. The first isotope to be synthesized was 262Bh in 1981. There are 11 known isotopes ranging from 260Bh to 274Bh, and 1 isomer, 262mBh. The longest-lived isotope is 270Bh with a half-life of 2.4 minutes, although the unconfirmed 278Bh may have an even longer half-life of about 690 seconds.

Hassium (108Hs) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 265Hs in 1984. There are 13 known isotopes from 263Hs to 277Hs and 1–4 isomers. The most stable isotope of hassium cannot be determined based on existing data due to uncertainty that arises from the low number of measurements. The half-lives of 269Hs and 271Hs are about 12 seconds, whereas that of 270Hs is about 7.6 seconds. It is also possible that 277mHs is more stable than these, with its half-life likely being 130±100 seconds, but only one event of decay of this isotope has been registered as of 2016.

Meitnerium (109Mt) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 266Mt in 1982, and this is also the only isotope directly synthesized; all other isotopes are only known as decay products of heavier elements. There are eight known isotopes, from 266Mt to 278Mt. There may also be two isomers. The longest-lived of the known isotopes is 278Mt with a half-life of 8 seconds. The unconfirmed heavier 282Mt appears to have an even longer half-life of 67 seconds.

Darmstadtium (110Ds) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 269Ds in 1994. There are 11 known radioisotopes from 267Ds to 281Ds and 2 or 3 known isomers. The longest-lived isotope is 281Ds with a half-life of 14 seconds.

Roentgenium (111Rg) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 272Rg in 1994, which is also the only directly synthesized isotope; all others are decay products of heavier elements. There are seven known radioisotopes, having mass numbers of 272, 274, and 278–282. The longest-lived isotope is 282Rg with a half-life of about 2 minutes, although the unconfirmed 283Rg and 286Rg may have longer half-lives of about 5.1 minutes and 10.7 minutes respectively.

Copernicium (112Cn) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 277Cn in 1996. There are 6 known radioisotopes ; the longest-lived isotope is 285Cn with a half-life of 30 seconds.

Nihonium (113Nh) is a synthetic element. Being synthetic, a standard atomic weight cannot be given and like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 284Nh as a decay product of 288Mc in 2003. The first isotope to be directly synthesized was 278Nh in 2004. There are 6 known radioisotopes from 278Nh to 286Nh, along with the unconfirmed 287Nh and 290Nh. The longest-lived isotope is 286Nh with a half-life of 9.5 seconds.

Flerovium (114Fl) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 289Fl in 1999. Flerovium has six known isotopes, along with the unconfirmed 290Fl and possibly 2 nuclear isomers. The longest-lived isotope is 289Fl with a half-life of 1.9 seconds, but 290Fl may have a longer half-life of 19 seconds.

Livermorium (116Lv) is an artificial element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 293Lv in 2000. There are five known radioisotopes, with mass numbers 288 and 290–293, as well as a few suggestive indications of a possible heavier isotope 294Lv. The longest-lived known isotope is 293Lv with a half-life of 70 ms.

Tennessine (117Ts) is the most-recently synthesized synthetic element, and much of the data is hypothetical. As for any synthetic element, a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotopes to be synthesized were 293Ts and 294Ts in 2009. The longer-lived isotope is 294Ts with a half-life of 51 ms.

Oganesson (118Og) is a synthetic element created in particle accelerators, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first and only isotope to be synthesized was 294Og in 2002 and 2005; it has a half-life of 700 microseconds.

Ununennium (119Uue) has not yet been synthesised, so all data would be theoretical and a standard atomic weight cannot be given. Like all synthetic elements, it would have no stable isotopes.

Unbinilium (120Ubn) has not yet been synthesised, so all data would be theoretical and a standard atomic weight cannot be given. Like all synthetic elements, it would have no stable isotopes.

References

  1. Kovrizhnykh, N. (27 January 2022). "Update on the experiments at the SHE Factory". Flerov Laboratory of Nuclear Reactions. Retrieved 28 February 2022.
  2. 1 2 3 4 Oganessian, Yuri Ts.; Abdullin, F. Sh.; Bailey, P. D.; et al. (2010-04-09). "Synthesis of a New Element with Atomic Number Z=117". Physical Review Letters. American Physical Society. 104 (142502): 142502. Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID   20481935.
  3. 1 2 Oganessian, Y.T. (2015). "Super-heavy element research". Reports on Progress in Physics. 78 (3): 036301. Bibcode:2015RPPh...78c6301O. doi:10.1088/0034-4885/78/3/036301. PMID   25746203. S2CID   37779526.
  4. 1 2 3 4 Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. (2022). "New isotope 286Mc produced in the 243Am+48Ca reaction". Physical Review C. 106 (64306): 064306. Bibcode:2022PhRvC.106f4306O. doi: 10.1103/PhysRevC.106.064306 . S2CID   254435744.
  5. 1 2 3 Zagrebaev, V. (2004). "Fusion-fission dynamics of super-heavy element formation and decay" (PDF). Nuclear Physics A. 734: 164–167. Bibcode:2004NuPhA.734..164Z. doi:10.1016/j.nuclphysa.2004.01.025.
  6. 1 2 3 Feng, Z; Jin, G; Li, J; Scheid, W (2009). "Production of heavy and superheavy nuclei in massive fusion reactions". Nuclear Physics A. 816 (1–4): 33–51. arXiv: 0803.1117 . Bibcode:2009NuPhA.816...33F. doi:10.1016/j.nuclphysa.2008.11.003. S2CID   18647291.
  7. "List of experiments 2000–2006". Univerzita Komenského v Bratislave. Archived from the original on July 23, 2007.
  8. "Both neutron properties and new results at SHE Factory".
  9. C. Samanta; P. Roy Chowdhury; D. N. Basu (2007). "Predictions of alpha decay half lives of heavy and superheavy elements". Nucl. Phys. A. 789 (1–4): 142–154. arXiv: nucl-th/0703086 . Bibcode:2007NuPhA.789..142S. doi:10.1016/j.nuclphysa.2007.04.001. S2CID   7496348.
  10. Zhu, L.; Su, J.; Zhang, F. (2016). "Influence of the neutron numbers of projectile and target on the evaporation residue cross sections in hot fusion reactions". Physical Review C . 93 (6): 064610. Bibcode:2016PhRvC..93f4610Z. doi:10.1103/PhysRevC.93.064610.