| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Mo) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molybdenum (42Mo) has 39 known isotopes, ranging in atomic mass from 81 to 119, as well as four metastable nuclear isomers. Seven isotopes occur naturally, with atomic masses of 92, 94, 95, 96, 97, 98, and 100. All unstable isotopes of molybdenum decay into isotopes of zirconium, niobium, technetium, and ruthenium. [5]
Molybdenum-100, with a half-life of 7.07×1018 years, is the only naturally occurring radioisotope. It undergoes double beta decay into ruthenium-100. Molybdenum-98 is the most common isotope, comprising 24.14% of all molybdenum on Earth.
Nuclide [n 1] | Z | N | Isotopic mass (Da) [6] [n 2] [n 3] | Half-life [1] [n 4] | Decay mode [1] [n 5] | Daughter isotope [n 6] | Spin and parity [1] [n 7] [n 8] | Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion [1] | Range of variation | |||||||||||||||||
81Mo | 42 | 39 | 80.96623(54)# | 1# ms [>400 ns] | β+? | 81Nb | 5/2+# | ||||||||||||
β+, p? | 80Zr | ||||||||||||||||||
82Mo | 42 | 40 | 81.95666(43)# | 30# ms [>400 ns] | β+? | 82Nb | 0+ | ||||||||||||
β+, p? | 81Zr | ||||||||||||||||||
83Mo | 42 | 41 | 82.95025(43)# | 23(19) ms | β+ | 83Nb | 3/2−# | ||||||||||||
β+, p? | 82Zr | ||||||||||||||||||
84Mo | 42 | 42 | 83.94185(32)# | 2.3(3) s | β+ | 84Nb | 0+ | ||||||||||||
β+, p? | 83Zr | ||||||||||||||||||
85Mo | 42 | 43 | 84.938261(17) | 3.2(2) s | β+ (99.86%) | 85Nb | (1/2+) | ||||||||||||
β+, p (0.14%) | 84Zr | ||||||||||||||||||
86Mo | 42 | 44 | 85.931174(3) | 19.1(3) s | β+ | 86Nb | 0+ | ||||||||||||
87Mo | 42 | 45 | 86.928196(3) | 14.1(3) s | β+ (85%) | 87Nb | 7/2+# | ||||||||||||
β+, p (15%) | 86Zr | ||||||||||||||||||
88Mo | 42 | 46 | 87.921968(4) | 8.0(2) min | β+ | 88Nb | 0+ | ||||||||||||
89Mo | 42 | 47 | 88.919468(4) | 2.11(10) min | β+ | 89Nb | (9/2+) | ||||||||||||
89mMo | 387.5(2) keV | 190(15) ms | IT | 89Mo | (1/2−) | ||||||||||||||
90Mo | 42 | 48 | 89.913931(4) | 5.56(9) h | β+ | 90Nb | 0+ | ||||||||||||
90mMo | 2874.73(15) keV | 1.14(5) μs | IT | 90Mo | 8+ | ||||||||||||||
91Mo | 42 | 49 | 90.911745(7) | 15.49(1) min | β+ | 91Nb | 9/2+ | ||||||||||||
91mMo | 653.01(9) keV | 64.6(6) s | IT (50.0%) | 91Mo | 1/2− | ||||||||||||||
β+ (50.0%) | 91Nb | ||||||||||||||||||
92Mo | 42 | 50 | 91.90680715(17) | Observationally Stable [n 9] | 0+ | 0.14649(106) | |||||||||||||
92mMo | 2760.52(14) keV | 190(3) ns | IT | 92Mo | 8+ | ||||||||||||||
93Mo | 42 | 51 | 92.90680877(19) | 4839(63) y [2] | EC (95.7%) | 93mNb | 5/2+ | ||||||||||||
EC (4.3%) | 93Nb | ||||||||||||||||||
93m1Mo | 2424.95(4) keV | 6.85(7) h | IT (99.88%) | 93Mo | 21/2+ | ||||||||||||||
β+ (0.12%) | 93Nb | ||||||||||||||||||
93m2Mo | 9695(17) keV | 1.8(10) μs | IT | 93Mo | (39/2−) | ||||||||||||||
94Mo | 42 | 52 | 93.90508359(15) | Stable | 0+ | 0.09187(33) | |||||||||||||
95Mo [n 10] | 42 | 53 | 94.90583744(13) | Stable | 5/2+ | 0.15873(30) | |||||||||||||
96Mo | 42 | 54 | 95.90467477(13) | Stable | 0+ | 0.16673(8) | |||||||||||||
97Mo [n 10] | 42 | 55 | 96.90601690(18) | Stable | 5/2+ | 0.09582(15) | |||||||||||||
98Mo [n 10] | 42 | 56 | 97.90540361(19) | Observationally Stable [n 11] | 0+ | 0.24292(80) | |||||||||||||
99Mo [n 10] [n 12] | 42 | 57 | 98.90770730(25) | 65.932(5) h | β− | 99mTc | 1/2+ | ||||||||||||
99m1Mo | 97.785(3) keV | 15.5(2) μs | IT | 99Mo | 5/2+ | ||||||||||||||
99m2Mo | 684.10(19) keV | 760(60) ns | IT | 99Mo | 11/2− | ||||||||||||||
100Mo [n 13] [n 10] | 42 | 58 | 99.9074680(3) | 7.07(14)×1018 y | β−β− | 100Ru | 0+ | 0.09744(65) | |||||||||||
101Mo | 42 | 59 | 100.9103376(3) | 14.61(3) min | β− | 101Tc | 1/2+ | ||||||||||||
101m1Mo | 13.497(9) keV | 226(7) ns | IT | 101Mo | 3/2+ | ||||||||||||||
101m2Mo | 57.015(11) keV | 133(70) ns | IT | 101Mo | 5/2+ | ||||||||||||||
102Mo | 42 | 60 | 101.910294(9) | 11.3(2) min | β− | 102Tc | 0+ | ||||||||||||
103Mo | 42 | 61 | 102.913092(10) | 67.5(15) s | β− | 103Tc | 3/2+ | ||||||||||||
104Mo | 42 | 62 | 103.913747(10) | 60(2) s | β− | 104Tc | 0+ | ||||||||||||
105Mo | 42 | 63 | 104.9169798(23) [7] | 36.3(8) s | β− | 105Tc | (5/2−) | ||||||||||||
106Mo | 42 | 64 | 105.9182732(98) | 8.73(12) s | β− | 106Tc | 0+ | ||||||||||||
107Mo | 42 | 65 | 106.9221198(99) | 3.5(5) s | β− | 107Tc | (1/2+) | ||||||||||||
107mMo | 65.4(2) keV | 445(21) ns | IT | 107Mo | (5/2+) | ||||||||||||||
108Mo | 42 | 66 | 107.9240475(99) | 1.105(10) s | β− (>99.5%) | 108Tc | 0+ | ||||||||||||
β−, n (<0.5%) | 107Tc | ||||||||||||||||||
109Mo | 42 | 67 | 108.928438(12) | 700(14) ms | β− (98.7%) | 109Tc | (1/2+) | ||||||||||||
β−, n (1.3%) | 108Tc | ||||||||||||||||||
109mMo | 69.7(5) keV | 210(60) ns | IT | 109Mo | 5/2+# | ||||||||||||||
110Mo | 42 | 68 | 109.930718(26) | 292(7) ms | β− (98.0%) | 110Tc | 0+ | ||||||||||||
β−, n (2.0%) | 109Tc | ||||||||||||||||||
111Mo | 42 | 69 | 110.935652(14) | 193.6(44) ms | β− (>88%) | 111Tc | 1/2+# | ||||||||||||
β−, n (<12%) | 110Tc | ||||||||||||||||||
111mMo | 100(50)# keV | ~200 ms | β− | 111Tc | 7/2−# | ||||||||||||||
β−, n? | 110Tc | ||||||||||||||||||
112Mo | 42 | 70 | 111.93829(22)# | 125(5) ms | β− | 112Tc | 0+ | ||||||||||||
β−, n? | 111Tc | ||||||||||||||||||
113Mo | 42 | 71 | 112.94348(32)# | 80(2) ms | β− | 113Tc | 5/2+# | ||||||||||||
β−, n? | 112Tc | ||||||||||||||||||
114Mo | 42 | 72 | 113.94667(32)# | 58(2) ms | β− | 114Tc | 0+ | ||||||||||||
β−, n? | 113Tc | ||||||||||||||||||
115Mo | 42 | 73 | 114.95217(43)# | 45.5(20) ms | β− | 115Tc | 3/2+# | ||||||||||||
β−, n? | 114Tc | ||||||||||||||||||
β−, 2n? | 113Tc | ||||||||||||||||||
116Mo | 42 | 74 | 115.95576(54)# | 32(4) ms | β− | 116Tc | 0+ | ||||||||||||
β−, n? | 115Tc | ||||||||||||||||||
β−, 2n? | 114Tc | ||||||||||||||||||
117Mo | 42 | 75 | 116.96169(54)# | 22(5) ms | β− | 117Tc | 3/2+# | ||||||||||||
β−, n? | 116Tc | ||||||||||||||||||
β−, 2n? | 115Tc | ||||||||||||||||||
118Mo | 42 | 76 | 117.96525(54)# | 21(6) ms | β− | 118Tc | 0+ | ||||||||||||
β−, n? | 117Tc | ||||||||||||||||||
β−, 2n? | 116Tc | ||||||||||||||||||
119Mo | 42 | 77 | 118.97147(32)# | 12# ms [>550 ns] | β−? | 119Tc | 3/2+# | ||||||||||||
β−, n? | 118Tc | ||||||||||||||||||
β−, 2n? | 117Tc | ||||||||||||||||||
This table header & footer: |
EC: | Electron capture |
IT: | Isomeric transition |
n: | Neutron emission |
p: | Proton emission |
Molybdenum-99 is produced commercially by intense neutron-bombardment of a highly purified uranium-235 target, followed rapidly by extraction. [8] It is used as a parent radioisotope in technetium-99m generators to produce the even shorter-lived daughter isotope technetium-99m, which is used in approximately 40 million medical procedures annually. A common misunderstanding or misnomer is that 99Mo is used in these diagnostic medical scans, when actually it has no role in the imaging agent or the scan itself. In fact, 99Mo co-eluted with the 99mTc (also known as breakthrough) is considered a contaminant and is minimised to adhere to the appropriate USP (or equivalent) regulations and standards. The IAEA recommends that 99Mo concentrations exceeding more than 0.15 μCi/mCi 99mTc or 0.015% should not be administered for usage in humans. [9] Typically, quantification of 99Mo breakthrough is performed for every elution when using a 99Mo/99mTc generator during QA-QC testing of the final product.
There are alternative routes for generating 99Mo that do not require a fissionable target, such as high or low enriched uranium (i.e., HEU or LEU). Some of these include accelerator-based methods, such as proton bombardment or photoneutron reactions on enriched 100Mo targets. Historically, 99Mo generated by neutron capture on natural isotopic molybdenum or enriched 98Mo targets was used for the development of commercial 99Mo/99mTc generators. [10] [11] The neutron-capture process was eventually superseded by fission-based 99Mo that could be generated with much higher specific activities. Implementing feed-stocks of high specific activity 99Mo solutions thus allowed for higher quality production and better separations of 99mTc from 99Mo on small alumina column using chromatography. Employing low-specific activity 99Mo under similar conditions is particularly problematic in that either higher Mo loading capacities or larger columns are required for accommodating equivalent amounts of 99Mo. Chemically speaking, this phenomenon occurs due to other Mo isotopes present aside from 99Mo that compete for surface site interactions on the column substrate. In turn, low-specific activity 99Mo usually requires much larger column sizes and longer separation times, and usually yields 99mTc accompanied by unsatisfactory amounts of the parent radioisotope when using γ-alumina as the column substrate. Ultimately, the inferior end-product 99mTc generated under these conditions makes it essentially incompatible with the commercial supply-chain.
In the last decade, cooperative agreements between the US government and private capital entities have resurrected neutron capture production for commercially distributed 99Mo/99mTc in the United States of America. [12] The return to neutron-capture-based 99Mo has also been accompanied by the implementation of novel separation methods that allow for low-specific activity 99Mo to be utilized.
Technetium is a chemical element; it has symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. Technetium and promethium are the only radioactive elements whose neighbours in the sense of atomic number are both stable. All available technetium is produced as a synthetic element. Naturally occurring technetium is a spontaneous fission product in uranium ore and thorium ore, or the product of neutron capture in molybdenum ores. This silvery gray, crystalline transition metal lies between manganese and rhenium in group 7 of the periodic table, and its chemical properties are intermediate between those of both adjacent elements. The most common naturally occurring isotope is 99Tc, in traces only.
A synthetic radioisotope is a radionuclide that is not found in nature: no natural process or mechanism exists which produces it, or it is so unstable that it decays away in a very short period of time. Frédéric Joliot-Curie and Irène Joliot-Curie were the first to produce a synthetic radioisotope in the 20th century. Examples include technetium-99 and promethium-146. Many of these are found in, and harvested from, spent nuclear fuel assemblies. Some must be manufactured in particle accelerators.
A radioactive tracer, radiotracer, or radioactive label is a synthetic derivative of a natural compound in which one or more atoms have been replaced by a radionuclide. By virtue of its radioactive decay, it can be used to explore the mechanism of chemical reactions by tracing the path that the radioisotope follows from reactants to products. Radiolabeling or radiotracing is thus the radioactive form of isotopic labeling. In biological contexts, experiments that use radioisotope tracers are sometimes called radioisotope feeding experiments.
A technetium-99m generator, or colloquially a technetium cow or moly cow, is a device used to extract the metastable isotope 99mTc of technetium from a decaying sample of molybdenum-99. 99Mo has a half-life of 66 hours and can be easily transported over long distances to hospitals where its decay product technetium-99m is extracted and used for a variety of nuclear medicine diagnostic procedures, where its short half-life is very useful.
Naturally occurring gadolinium (64Gd) is composed of 6 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd, 158Gd and 160Gd, and 1 radioisotope, 152Gd, with 158Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of 160Gd has never been observed; only a lower limit on its half-life of more than 1.3×1021 years has been set experimentally.
Naturally occurring samarium (62Sm) is composed of five stable isotopes, 144Sm, 149Sm, 150Sm, 152Sm and 154Sm, and two extremely long-lived radioisotopes, 147Sm and 148Sm, with 152Sm being the most abundant. 146Sm is also fairly long-lived, but is not long-lived enough to have survived in significant quantities from the formation of the Solar System on Earth, although it remains useful in radiometric dating in the Solar System as an extinct radionuclide. It is the longest-lived nuclide that has not yet been confirmed to be primordial.
Naturally occurring neodymium (60Nd) is composed of 5 stable isotopes, 142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2% natural abundance), and 2 long-lived radioisotopes, 144Nd and 150Nd. In all, 33 radioisotopes of neodymium have been characterized up to now, with the most stable being naturally occurring isotopes 144Nd (alpha decay, a half-life (t1/2) of 2.29×1015 years) and 150Nd (double beta decay, t1/2 of 7×1018 years), and for practical purposes they can be considered to be stable as well. All of the remaining radioactive isotopes have half-lives that are less than 12 days, and the majority of these have half-lives that are less than 70 seconds; the most stable artificial isotope is 147Nd with a half-life of 10.98 days. This element also has 13 known meta states with the most stable being 139mNd (t1/2 5.5 hours), 135mNd (t1/2 5.5 minutes) and 133m1Nd (t1/2 ~70 seconds).
Naturally occurring barium (56Ba) is a mix of six stable isotopes and one very long-lived radioactive primordial isotope, barium-130, identified as being unstable by geochemical means (from analysis of the presence of its daughter xenon-130 in rocks) in 2001. This nuclide decays by double electron capture (absorbing two electrons and emitting two neutrinos), with a half-life of (0.5–2.7)×1021 years (about 1011 times the age of the universe).
Naturally occurring xenon (54Xe) consists of seven stable isotopes and two very long-lived isotopes. Double electron capture has been observed in 124Xe and double beta decay in 136Xe, which are among the longest measured half-lives of all nuclides. The isotopes 126Xe and 134Xe are also predicted to undergo double beta decay, but this process has never been observed in these isotopes, so they are considered to be stable. Beyond these stable forms, 32 artificial unstable isotopes and various isomers have been studied, the longest-lived of which is 127Xe with a half-life of 36.345 days. All other isotopes have half-lives less than 12 days, most less than 20 hours. The shortest-lived isotope, 108Xe, has a half-life of 58 μs, and is the heaviest known nuclide with equal numbers of protons and neutrons. Of known isomers, the longest-lived is 131mXe with a half-life of 11.934 days. 129Xe is produced by beta decay of 129I ; 131mXe, 133Xe, 133mXe, and 135Xe are some of the fission products of both 235U and 239Pu, so are used as indicators of nuclear explosions.
There are 39 known isotopes and 17 nuclear isomers of tellurium (52Te), with atomic masses that range from 104 to 142. These are listed in the table below.
Tin (50Sn) is the element with the greatest number of stable isotopes. This is probably related to the fact that 50 is a "magic number" of protons. In addition, twenty-nine unstable tin isotopes are known, including tin-100 (100Sn) and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.
Natural palladium (46Pd) is composed of six stable isotopes, 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, although 102Pd and 110Pd are theoretically unstable. The most stable radioisotopes are 107Pd with a half-life of 6.5 million years, 103Pd with a half-life of 17 days, and 100Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u (91Pd) to 128.96 u (129Pd). Most of these have half-lives that are less than 30 minutes except 101Pd, 109Pd, and 112Pd.
Naturally occurring ruthenium (44Ru) is composed of seven stable isotopes. Additionally, 27 radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru, with a half-life of 373.59 days; 103Ru, with a half-life of 39.26 days and 97Ru, with a half-life of 2.9 days.
Technetium (43Tc) is one of the two elements with Z < 83 that have no stable isotopes; the other such element is promethium. It is primarily artificial, with only trace quantities existing in nature produced by spontaneous fission or neutron capture by molybdenum. The first isotopes to be synthesized were 97Tc and 99Tc in 1936, the first artificial element to be produced. The most stable radioisotopes are 97Tc, 98Tc, and 99Tc.
Naturally occurring niobium (41Nb) is composed of one stable isotope (93Nb). The most stable radioisotope is 92Nb with a half-life of 34.7 million years. The next longest-lived niobium isotopes are 94Nb and 91Nb with a half-life of 680 years. There is also a meta state of 93Nb at 31 keV whose half-life is 16.13 years. Twenty-seven other radioisotopes have been characterized. Most of these have half-lives that are less than two hours, except 95Nb, 96Nb and 90Nb. The primary decay mode before stable 93Nb is electron capture and the primary mode after is beta emission with some neutron emission occurring in 104–110Nb.
Naturally occurring zirconium (40Zr) is composed of four stable isotopes (of which one may in the future be found radioactive), and one very long-lived radioisotope (96Zr), a primordial nuclide that decays via double beta decay with an observed half-life of 2.0×1019 years; it can also undergo single beta decay, which is not yet observed, but the theoretically predicted value of t1/2 is 2.4×1020 years. The second most stable radioisotope is 93Zr, which has a half-life of 1.53 million years. Thirty other radioisotopes have been observed. All have half-lives less than a day except for 95Zr (64.02 days), 88Zr (83.4 days), and 89Zr (78.41 hours). The primary decay mode is electron capture for isotopes lighter than 92Zr, and the primary mode for heavier isotopes is beta decay.
There are 34 known isotopes of krypton (36Kr) with atomic mass numbers from 69 through 102. Naturally occurring krypton is made of five stable isotopes and one which is slightly radioactive with an extremely long half-life, plus traces of radioisotopes that are produced by cosmic rays in the atmosphere.
Selenium (34Se) has six natural isotopes that occur in significant quantities, along with the trace isotope 79Se, which occurs in minute quantities in uranium ores. Five of these isotopes are stable: 74Se, 76Se, 77Se, 78Se, and 80Se. The last three also occur as fission products, along with 79Se, which has a half-life of 327,000 years, and 82Se, which has a very long half-life (~1020 years, decaying via double beta decay to 82Kr) and for practical purposes can be considered to be stable. There are 23 other unstable isotopes that have been characterized, the longest-lived being 79Se with a half-life 327,000 years, 75Se with a half-life of 120 days, and 72Se with a half-life of 8.40 days. Of the other isotopes, 73Se has the longest half-life, 7.15 hours; most others have half-lives not exceeding 38 seconds.
Naturally occurring zinc (30Zn) is composed of the 5 stable isotopes 64Zn, 66Zn, 67Zn, 68Zn, and 70Zn with 64Zn being the most abundant. Twenty-eight radioisotopes have been characterised with the most stable being 65Zn with a half-life of 244.26 days, and then 72Zn with a half-life of 46.5 hours. All of the remaining radioactive isotopes have half-lives that are less than 14 hours and the majority of these have half-lives that are less than 1 second. This element also has 10 meta states.
Technetium-99m (99mTc) is a metastable nuclear isomer of technetium-99, symbolized as 99mTc, that is used in tens of millions of medical diagnostic procedures annually, making it the most commonly used medical radioisotope in the world.