Isotopes of molybdenum

Last updated
Isotopes of molybdenum  (42Mo)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
92Mo14.7% stable
93Mo synth 4839 y [2] ε 93Nb
94Mo9.19%stable
95Mo15.9%stable
96Mo16.7%stable
97Mo9.58%stable
98Mo24.3%stable
99Mosynth65.94 h β 99mTc
γ
100Mo9.74%7.1×1018 yββ 100Ru
Standard atomic weight Ar°(Mo)

Molybdenum (42Mo) has 33 known isotopes, ranging in atomic mass from 83 to 115, as well as four metastable nuclear isomers. Seven isotopes occur naturally, with atomic masses of 92, 94, 95, 96, 97, 98, and 100. All unstable isotopes of molybdenum decay into isotopes of zirconium, niobium, technetium, and ruthenium. [5]

Contents

Molybdenum-100, with a half-life of approximately 8.5×1018  y, is the only naturally occurring radioisotope. It undergoes double beta decay into ruthenium-100. Molybdenum-98 is the most common isotope, comprising 24.14% of all molybdenum on Earth. Molybdenum isotopes with mass numbers 111 and up all have half-lives of approximately .15 s. [5]

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2] [n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7] [n 8]
Natural abundance (mole fraction)
Excitation energyNormal proportionRange of variation
81Mo42391# msβ+?81Nb5/2+#
β+, p?80Zr
82Mo424030# msβ+?82Nb0+
β+, p?81Zr
83Mo424182.94874(54)#23(19) ms
[6(+30-3) ms]
β+ 83Nb3/2−#
β+, p 82Zr
84Mo424283.94009(43)#3.8(9) ms
[3.7(+10-8) s]
β+84Nb0+
85Mo424384.93655(30)#3.2(2) sβ+85Nb(1/2−)#
86Mo424485.93070(47)19.6(11) sβ+86Nb0+
87Mo424586.92733(24)14.05(23) sβ+ (85%)87Nb7/2+#
β+, p (15%)86Zr
88Mo424687.921953(22)8.0(2) minβ+88Nb0+
89Mo424788.919480(17)2.11(10) minβ+89Nb(9/2+)
89mMo387.5(2) keV190(15) ms IT 89Mo(1/2−)
90Mo424889.913937(7)5.56(9) hβ+90Nb0+
90mMo2874.73(15) keV1.12(5) μs8+#
91Mo424990.911750(12)15.49(1) minβ+91Nb9/2+
91mMo653.01(9) keV64.6(6) sIT (50.1%)91Mo1/2−
β+ (49.9%)91Nb
92Mo425091.906811(4) Observationally Stable [n 9] 0+0.14649(106)
92mMo2760.46(16) keV190(3) ns8+
93Mo425192.906813(4)4839(63) y [2] EC93Nb5/2+
93mMo2424.89(3) keV6.85(7) hIT (99.88%)93Mo21/2+
β+ (.12%)93Nb
94Mo425293.9050883(21)Stable0+0.09187(33)
95Mo [n 10] 425394.9058421(21)Stable5/2+0.15873(30)
96Mo425495.9046795(21)Stable0+0.16673(30)
97Mo [n 10] 425596.9060215(21)Stable5/2+0.09582(15)
98Mo [n 10] 425697.90540482(21)Observationally Stable [n 11] 0+0.24292(80)
99Mo [n 10] [n 12] 425798.9077119(21)2.7489(6) dβ99mTc1/2+
99m1Mo97.785(3) keV15.5(2) μs5/2+
99m2Mo684.5(4) keV0.76(6) μs11/2−
100Mo [n 13] [n 10] 425899.907477(6)8.5(5)×1018 aββ100Ru0+0.09744(65)
101Mo4259100.910347(6)14.61(3) minβ101Tc1/2+
102Mo4260101.910297(22)11.3(2) minβ102Tc0+
103Mo4261102.91321(7)67.5(15) sβ103Tc(3/2+)
104Mo4262103.91376(6)60(2) sβ104Tc0+
105Mo4263104.91697(8)35.6(16) sβ105Tc(5/2−)
106Mo4264105.918137(19)8.73(12) sβ106Tc0+
107Mo4265106.92169(17)3.5(5) sβ107Tc(7/2−)
107mMo66.3(2) keV470(30) ns(5/2−)
108Mo4266107.92345(21)#1.09(2) sβ108Tc0+
109Mo4267108.92781(32)#0.53(6) sβ109Tc(7/2−)#
110Mo4268109.92973(43)#0.27(1) sβ (>99.9%)110Tc0+
β, n (<.1%)109Tc
111Mo4269110.93441(43)#200# ms
[>300 ns]
β111Tc
112Mo4270111.93684(64)#150# ms
[>300 ns]
β112Tc0+
113Mo4271112.94188(64)#100# ms
[>300 ns]
β113Tc
114Mo4272113.94492(75)#80# ms
[>300 ns]
0+
115Mo4273114.95029(86)#60# ms
[>300 ns]
116Mo427432(4) msβ116Tc0+
117Mo427522(5) msβ117Tc3/2+#
118Mo427621(6) msβ118Tc0+
119Mo427712# msβ?119Tc3/2+#
β, n?118Tc
β, 2n?117Tc
This table header & footer:
  1. mMb  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life  nearly stable, half-life longer than age of universe.
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. Believed to decay by β+β+ to 92Zr with a half-life over 1.9×1020 years
  10. 1 2 3 4 5 Fission product
  11. Believed to decay by ββ to 98Ru with a half-life of over 1×1014 years
  12. Used to produce the medically useful radioisotope technetium-99m
  13. Primordial radionuclide

Molybdenum-99

Molybdenum-99 is produced commercially by intense neutron-bombardment of a highly purified uranium-235 target, followed rapidly by extraction. [6] It is used as a parent radioisotope in technetium-99m generators to produce the even shorter-lived daughter isotope technetium-99m, which is used in approximately 40 million medical procedures annually. A common misunderstanding or misnomer is that 99Mo is used in these diagnostic medical scans, when actually it has no role in the imaging agent or the scan itself. In fact, 99Mo co-eluted with the 99mTc (also known as breakthrough) is considered a contaminant and is minimised to adhere to the appropriate USP (or equivalent) regulations and standards. The IAEA recommends that 99Mo concentrations exceeding more than 0.15 µCi/mCi 99mTc or 0.015% should not be administered for usage in humans. [7] Typically, quantification of 99Mo breakthrough is performed for every elution when using a 99Mo/99mTc generator during QA-QC testing of the final product.

There are alternative routes for generating 99Mo that do not require a fissionable target, such as high or low enriched uranium (i.e., HEU or LEU). Some of these include accelerator-based methods, such as proton bombardment or photoneutron reactions on enriched 100Mo targets. Historically, 99Mo generated by neutron capture on natural isotopic molybdenum or enriched 98Mo targets was used for the development of commercial 99Mo/99mTc generators. [8] [9] The neutron-capture process was eventually superseded by fission-based 99Mo that could be generated with much higher specific activities. Implementing feed-stocks of high specific activity 99Mo solutions thus allowed for higher quality production and better separations of 99mTc from 99Mo on small alumina column using chromatography. Employing low-specific activity 99Mo under similar conditions is particularly problematic in that either higher Mo loading capacities or larger columns are required for accommodating equivalent amounts of 99Mo. Chemically speaking, this phenomenon occurs due to other Mo isotopes present aside from 99Mo that compete for surface site interactions on the column substrate. In turn, low-specific activity 99Mo usually requires much larger column sizes and longer separation times, and usually yields 99mTc accompanied by unsatisfactory amounts of the parent radioisotope when using γ-alumina as the column substrate. Ultimately, the inferior end-product 99mTc generated under these conditions makes it essentially incompatible with the commercial supply-chain.

In the last decade, cooperative agreements between the US government and private capital entities have resurrected neutron capture production for commercially distributed 99Mo/99mTc in the United States of America. [10] The return to neutron-capture-based 99Mo has also been accompanied by the implementation of novel separation methods that allow for low-specific activity 99Mo to be utilized.

Related Research Articles

<span class="mw-page-title-main">Technetium-99m generator</span> A device used to extract the short-lived radioactive isotope Tc-99m from a longer-lived Mo-99 source

A technetium-99m generator, or colloquially a technetium cow or moly cow, is a device used to extract the metastable isotope 99mTc of technetium from a decaying sample of molybdenum-99. 99Mo has a half-life of 66 hours and can be easily transported over long distances to hospitals where its decay product technetium-99m is extracted and used for a variety of nuclear medicine diagnostic procedures, where its short half-life is very useful.

Naturally occurring platinum (78Pt) consists of five stable isotopes (192Pt, 194Pt, 195Pt, 196Pt, 198Pt) and one very long-lived (half-life 4.83×1011 years) radioisotope (190Pt). There are also 34 known synthetic radioisotopes, the longest-lived of which is 193Pt with a half-life of 50 years. All other isotopes have half-lives under a year, most under a day. All isotopes of platinum are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed. Platinum-195 is the most abundant isotope.

There are two natural isotopes of iridium (77Ir), and 37 radioisotopes, the most stable radioisotope being 192Ir with a half-life of 73.83 days, and many nuclear isomers, the most stable of which is 192m2Ir with a half-life of 241 years. All other isomers have half-lives under a year, most under a day. All isotopes of iridium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Natural hafnium (72Hf) consists of five observationally stable isotopes (176Hf, 177Hf, 178Hf, 179Hf, and 180Hf) and one very long-lived radioisotope, 174Hf, with a half-life of 7.0×1016 years. In addition, there are 34 known synthetic radioisotopes, the most stable of which is 182Hf with a half-life of 8.9×106 years. This extinct radionuclide is used in hafnium–tungsten dating to study the chronology of planetary differentiation.

Naturally occurring thulium (69Tm) is composed of one stable isotope, 169Tm. Thirty-six radioisotopes have been characterized, with the most stable being 171Tm with a half-life of 1.92 years, 170Tm with a half-life of 128.6 days, 168Tm with a half-life of 93.1 days, and 167Tm with a half-life of 9.25 days. All of the remaining radioactive isotopes have half-lives that are less than 64 hours, and the majority of these have half-lives that are less than 2 minutes. This element also has 26 meta states, with the most stable being 164mTm, 160mTm and 155mTm.

Naturally occurring gadolinium (64Gd) is composed of 6 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd, 158Gd and 160Gd, and 1 radioisotope, 152Gd, with 158Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of 160Gd has never been observed; only a lower limit on its half-life of more than 1.3×1021 years has been set experimentally.

Naturally occurring europium (63Eu) is composed of two isotopes, 151Eu and 153Eu, with 153Eu being the most abundant (52.2% natural abundance). While 153Eu is observationally stable (theoretically can undergo alpha decay with half-life over 5.5×1017 years), 151Eu was found in 2007 to be unstable and undergo alpha decay. The half-life is measured to be (4.62 ± 0.95(stat.) ± 0.68(syst.)) × 1018 years which corresponds to 1 alpha decay per two minutes in every kilogram of natural europium. Besides the natural radioisotope 151Eu, 36 artificial radioisotopes have been characterized, with the most stable being 150Eu with a half-life of 36.9 years, 152Eu with a half-life of 13.516 years, 154Eu with a half-life of 8.593 years, and 155Eu with a half-life of 4.7612 years. The majority of the remaining radioactive isotopes, which range from 130Eu to 170Eu, have half-lives that are less than 12.2 seconds. This element also has 18 meta states, with the most stable being 150mEu (t1/2 12.8 hours), 152m1Eu (t1/2 9.3116 hours) and 152m2Eu (t1/2 96 minutes).

Promethium (61Pm) is an artificial element, except in trace quantities as a product of spontaneous fission of 238U and 235U and alpha decay of 151Eu, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was first synthesized in 1945.

There are 39 known isotopes and 17 nuclear isomers of tellurium (52Te), with atomic masses that range from 104 to 142. These are listed in the table below.

Tin (50Sn) is the element with the greatest number of stable isotopes. Moreover, tin is not only the element with the greatest number of observationally stable isotopes, but also the element with the greatest number of theoretically stable isotopes. This is probably related to the fact that 50 is a "magic number" of protons. In addition, twenty-nine unstable tin isotopes are known, including tin-100 (100Sn) and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.

Natural palladium (46Pd) is composed of six stable isotopes, 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, although 102Pd and 110Pd are theoretically unstable. The most stable radioisotopes are 107Pd with a half-life of 6.5 million years, 103Pd with a half-life of 17 days, and 100Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u (91Pd) to 128.96 u (129Pd). Most of these have half-lives that are less than a half an hour except 101Pd, 109Pd, and 112Pd.

Naturally occurring ruthenium (44Ru) is composed of seven stable isotopes. Additionally, 27 radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru, with a half-life of 373.59 days; 103Ru, with a half-life of 39.26 days and 97Ru, with a half-life of 2.9 days.

Technetium (43Tc) is one of the two elements with Z < 83 that have no stable isotopes; the other such element is promethium. It is primarily artificial, with only trace quantities existing in nature produced by spontaneous fission or neutron capture by molybdenum. The first isotopes to be synthesized were 97Tc and 99Tc in 1936, the first artificial element to be produced. The most stable radioisotopes are 97Tc, 98Tc, and 99Tc.

Naturally occurring zirconium (40Zr) is composed of four stable isotopes (of which one may in the future be found radioactive), and one very long-lived radioisotope (96Zr), a primordial nuclide that decays via double beta decay with an observed half-life of 2.0×1019 years; it can also undergo single beta decay, which is not yet observed, but the theoretically predicted value of t1/2 is 2.4×1020 years. The second most stable radioisotope is 93Zr, which has a half-life of 1.53 million years. Thirty other radioisotopes have been observed. All have half-lives less than a day except for 95Zr (64.02 days), 88Zr (83.4 days), and 89Zr (78.41 hours). The primary decay mode is electron capture for isotopes lighter than 92Zr, and the primary mode for heavier isotopes is beta decay.

Natural yttrium (39Y) is composed of a single isotope yttrium-89. The most stable radioisotopes are 88Y, which has a half-life of 106.6 days and 91Y with a half-life of 58.51 days. All the other isotopes have half-lives of less than a day, except 87Y, which has a half-life of 79.8 hours, and 90Y, with 64 hours. The dominant decay mode below the stable 89Y is electron capture and the dominant mode after it is beta emission. Thirty-five unstable isotopes have been characterized.

Germanium (32Ge) has five naturally occurring isotopes, 70Ge, 72Ge, 73Ge, 74Ge, and 76Ge. Of these, 76Ge is very slightly radioactive, decaying by double beta decay with a half-life of 1.78 × 1021 years (130 billion times the age of the universe).

Naturally occurring zinc (30Zn) is composed of the 5 stable isotopes 64Zn, 66Zn, 67Zn, 68Zn, and 70Zn with 64Zn being the most abundant. Twenty-five radioisotopes have been characterised with the most abundant and stable being 65Zn with a half-life of 244.26 days, and 72Zn with a half-life of 46.5 hours. All of the remaining radioactive isotopes have half-lives that are less than 14 hours and the majority of these have half-lives that are less than 1 second. This element also has 10 meta states.

Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 27 radioisotopes. The most stable radioisotope is 67Cu with a half-life of 61.83 hours, while the least stable is 54Cu with a half-life of approximately 75 ns. Most have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β+ decay, while isotopes with atomic masses above 65 tend to undergo β decay. 64Cu decays by both β+ and β.

Curium (96Cm) is an artificial element with an atomic number of 96. Because it is an artificial element, a standard atomic weight cannot be given, and it has no stable isotopes. The first isotope synthesized was 242Cm in 1944, which has 146 neutrons.

Berkelium (97Bk) is an artificial element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 243Bk in 1949. There are 20 known radioisotopes, from 230Bk and 233Bk to 253Bk, and 6 nuclear isomers. The longest-lived isotope is 247Bk with a half-life of 1,380 years.

References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. 1 2 Kajan, I.; Heinitz, S.; Kossert, K.; Sprung, P.; Dressler, R.; Schumann, D. (2021-10-05). "First direct determination of the 93Mo half-life". Scientific Reports. 11 (1). doi:10.1038/s41598-021-99253-5. ISSN   2045-2322. PMC   8492754 . PMID   34611245.
  3. "Standard Atomic Weights: Molybdenum". CIAAW. 2013.
  4. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  5. 1 2 Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, Florida: CRC Press. Section 11. ISBN   978-0-8493-0487-3.
  6. Frank N. Von Hippel; Laura H. Kahn (December 2006). "Feasibility of Eliminating the Use of Highly Enriched Uranium in the Production of Medical Radioisotopes". Science & Global Security. 14 (2 & 3): 151–162. Bibcode:2006S&GS...14..151V. doi:10.1080/08929880600993071. S2CID   122507063.
  7. Ibrahim I, Zulkifli H, Bohari Y, Zakaria I, Wan Hamirul BWK. Minimizing Molybdenum-99 Contamination In Technetium-99m Pertechnetate From The Elution Of 99Mo/99mTc Generator (PDF) (Report).
  8. Richards, P. (1989). Technetium-99m: The early days. 3rd International Symposium on Technetium in Chemistry and Nuclear Medicine, Padova, Italy, 5-8 Sep 1989. OSTI   5612212.
  9. Richards, P. (1965-10-14). The Technetium-99m Generator (Report). doi: 10.2172/4589063 . OSTI   4589063.
  10. "Emerging leader with new solutions in the field of nuclear medicine technology". NorthStar Medical Radioisotopes, LLC. Retrieved 2020-01-23.