Isotopes of barium

Last updated

Isotopes of barium  (56Ba)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
130Ba0.11%(0.5–2.7)×1021 y εε 130Xe
131Ba synth 11.52 d β+ 131Cs
132Ba0.1% stable
133Basynth10.51 y ε 133Cs
134Ba2.42%stable
135Ba6.59%stable
136Ba7.85%stable
137Ba11.2%stable
138Ba71.7%stable
140Basynth12.7534 d β 140La
Standard atomic weight Ar°(Ba)

Naturally occurring barium (56Ba) is a mix of six stable isotopes and one very long-lived radioactive primordial isotope, barium-130, identified as being unstable by geochemical means (from analysis of the presence of its daughter xenon-130 in rocks) in 2001, [4] [5] presumably decaying by double electron capture with a half-life of (0.5–2.7)×1021 years (about 1011 times the age of the universe). The two measurements are discordant; the above reflects the total range, the value in the table below is a crude average.

Contents

There are a total of thirty-three known radioisotopes in addition to 130Ba. The longest-lived of these is 133Ba, which has a half-life of 10.51 years. All other radioisotopes have half-lives shorter than two weeks. The longest-lived isomer is 133mBa, which has a half-life of 38.9 hours. The shorter-lived 137mBa (half-life 2.55 minutes) arises as the decay product of the common fission product caesium-137.

Barium-114 is predicted to undergo cluster decay, emitting a nucleus of stable 12C to produce 102Sn. However this decay is not yet observed; the upper limit on the branching ratio of such decay is 0.0034%.

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da) [6]
[n 2] [n 3]
Half-life [1]
Decay
mode
[1]
[n 4]
Daughter
isotope

[n 5] [n 6]
Spin and
parity [1]
[n 7] [n 8]
Natural abundance (mole fraction)
Excitation energyNormal proportion [1] Range of variation
114Ba5658113.95072(11)460(125) ms β+ (79%)114Cs0+
α (0.9%)110Xe
β+, p (20%)113Xe
CD (<.0034%)102Sn, 12C
115Ba5659114.94748(22)#0.45(5) sβ+115Cs5/2+#
β+, p (>15%)114Xe
116Ba5660115.94162(22)#1.3(2) sβ+ (97%)116Cs0+
β+, p (3%)115Xe
117Ba5661116.93832(27)1.75(7) sβ+ (87%)117Cs(3/2+)
β+, p (13%)116Xe
β+, α (0.024%)113I
118Ba5662117.93323(22)#5.2(2) sβ+118Cs0+
119Ba5663118.93066(21)5.4(3) sβ+ (75%)119Cs(3/2+) [7]
β+, p (25%)118Xe
119mBa [7] 66.0 keV360(20) ns IT 119Ba(5/2−)
120Ba5664119.92604(32)24(2) sβ+120Cs0+
121Ba5665120.92405(15)29.7(15) sβ+ (99.98%)121Cs5/2+
β+, p (0.02%)120Xe
122Ba5666121.91990(3)1.95(15) minβ+122Cs0+
123Ba5667122.918781(13)2.7(4) minβ+123Cs5/2+
123mBa120.95(8) keV830(60) nsIT123Ba1/2+#
124Ba5668123.915094(13)11.0(5) minβ+124Cs0+
125Ba5669124.914472(12)3.3(3) minβ+125Cs1/2+
125mBa120(20)# keV2.76(14) μsIT125Ba(7/2−)
126Ba5670125.911250(13)100(2) minβ+126Cs0+
127Ba5671126.911091(12)12.7(4) minβ+127Cs1/2+
127mBa80.32(11) keV1.93(7) sIT127Ba7/2−
128Ba5672127.9083524(17)2.43(5) d EC 128Cs0+
129Ba5673128.908683(11)2.23(11) hβ+129Cs1/2+
129mBa8.42(6) keV2.135(10) hβ+129Cs7/2+
IT?129Ba
130Ba [n 9] 5674129.9063260(3) 1×1021 yβ+β+130Xe0+0.0011(1)
130mBa2475.12(18) keV9.54(14) msIT130Ba8−
131Ba5675130.9069463(4)11.52(1) dβ+131Cs1/2+
131mBa187.995(9) keV14.26(9) minIT131Ba9/2−
132Ba5676131.9050612(11) Observationally Stable [n 10] 0+0.0010(1)
133Ba5677132.9060074(11)10.5379(16) yEC133Cs1/2+
133mBa288.252(9) keV38.90(6) hIT (99.99%)133Ba11/2−
EC (0.0104%)133Cs
134Ba [n 11] 5678133.90450825(27)Stable0+0.0242(15)
134mBa2957.2(5) keV2.61(13) μsIT134Ba10+
135Ba5679134.90568845(26)Stable3/2+0.0659(10)
135m1Ba268.218(20) keV28.11(2) hIT135Ba11/2−
135m2Ba2388.0(5) keV1.06(4) msIT135Ba(23/2+)
136Ba5680135.90457580(26)Stable0+0.0785(24)
136m1Ba2030.535(18) keV308.4(19) msIT136Ba7−
136m2Ba3357.19(25) keV91(2) nsIT136Ba10+
137Ba [n 11] 5681136.90582721(27)Stable3/2+0.1123(23)
137m1Ba [n 11] 661.659(3) keV2.552(1) minIT137Ba11/2−
137m2Ba2349.1(5) keV589(20) nsIT137Ba(19/2−)
138Ba [n 11] 5682137.90524706(27)Stable0+0.7170(29)
138mBa2090.536(21) keV850(100) nsIT138Ba6+
139Ba [n 11] 5683138.90884116(27)82.93(9) minβ139La7/2−
140Ba [n 11] 5684139.910608(8)12.7534(21) dβ140La0+
141Ba5685140.914404(6)18.27(7) minβ141La3/2−
142Ba5686141.916433(6)10.6(2) minβ142La0+
143Ba5687142.920625(7)14.5(3) sβ143La5/2−
144Ba5688143.922955(8)11.73(8) sβ144La0+
145Ba5689144.927518(9)4.31(16) sβ145La5/2−
146Ba5690145.9303632(19)2.15(4) sβ146La0+
147Ba5691146.935304(21)893(1) msβ (99.93%)147La5/2−
β, n (0.07%)146La
148Ba5692147.9382230(16)620(5) msβ (99.6%)148La0+
β, n (0.4%)147La
149Ba5693148.9432840(27)349(4) msβ (96.1%)149La3/2−#
β, n (3.9%)148La
150Ba5694149.946441(6)258(5) msβ (99.0%)150La0+
β, n (1.0%)149La
151Ba5695150.95176(43)#167(5) msβ151La3/2−#
β, n?150La
152Ba5696151.95533(43)#139(8) msβ152La0+
β, n?151La
153Ba5697152.96085(43)#113(39) msβ153La5/2−#
β, n?152La
β, 2n?151La
154Ba5698153.96466(54)#53(48) msβ154La0+
This table header & footer:
  1. mBa  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    EC: Electron capture
    CD: Cluster decay
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  5. Bold italics symbol as daughter  Daughter product is nearly stable.
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. Primordial radionuclide
  10. Believed to undergo β+β+ decay to 132Xe with a half-life over 3×1020 years
  11. 1 2 3 4 5 6 Fission product

See also

Daughter products other than barium

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Barium". CIAAW. 1985.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Meshik, A.P.; Hohenberg, C.M.; Pravdivtseva, O.V.; Kapusta, Y.S. (2001). "Weak decay of 130Ba and 132Ba: Geochemical measurements". Physical Review C. 64 (3): 035205–1–035205–6. Bibcode:2001PhRvC..64c5205M. doi:10.1103/PhysRevC.64.035205.
  5. M. Pujol; B. Marty; P. Burnard; P. Philippot (2009). "Xenon in Archean barite: Weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation". Geochimica et Cosmochimica Acta . 73 (22): 6834–6846. Bibcode:2009GeCoA..73.6834P. doi:10.1016/j.gca.2009.08.002.
  6. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  7. 1 2 Zheng, K. K.; Petrache, C. M.; Zhang, Z. H.; Astier, A.; Lv, B. F.; Greenlees, P. T.; Grahn, T.; Julin, R.; Juutinen, S.; Luoma, M.; Ojala, J.; Pakarinen, J.; Partanen, J.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Tann, H.; Uusitalo, J.; Zimba, G.; Cederwall, B.; Aktas, ö.; Ertoprak, A.; Zhang, W.; Guo, S.; Liu, M. L.; Zhou, X. H.; Kuti, I.; Nyakó, B. M.; Sohler, D.; Timár, J.; Andreoiu, C.; Doncel, M.; Joss, D. T.; Page, R. D. (30 July 2021). "Neutron excitations in Ba 119" (PDF). Physical Review C. 104 (1). doi:10.1103/PhysRevC.104.014326.