| |||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Ba) | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring barium (56Ba) is a mix of six stable isotopes and one very long-lived radioactive primordial isotope, barium-130, identified as being unstable by geochemical means (from analysis of the presence of its daughter xenon-130 in rocks) in 2001. [4] This nuclide decays by double electron capture (absorbing two electrons and emitting two neutrinos), with a half-life of (0.5–2.7)×1021 years (about 1011 times the age of the universe).
There are a total of thirty-three known radioisotopes in addition to 130Ba. The longest-lived of these is 133Ba, which has a half-life of 10.51 years. All other radioisotopes have half-lives shorter than two weeks. The longest-lived isomer is 133mBa, which has a half-life of 38.9 hours. The shorter-lived 137mBa (half-life 2.55 minutes) arises as the decay product of the common fission product caesium-137.
Barium-114 is predicted to undergo cluster decay, emitting a nucleus of stable 12C to produce 102Sn. However this decay is not yet observed; the upper limit on the branching ratio of such decay is 0.0034%.
Nuclide [n 1] | Z | N | Isotopic mass (Da) [5] [n 2] [n 3] | Half-life [1] | Decay mode [1] [n 4] | Daughter isotope [n 5] [n 6] | Spin and parity [1] [n 7] [n 8] | Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion [1] | Range of variation | |||||||||||||||||
114Ba | 56 | 58 | 113.95072(11) | 460(125) ms | β+ (79%) | 114Cs | 0+ | ||||||||||||
α (0.9%) | 110Xe | ||||||||||||||||||
β+, p (20%) | 113Xe | ||||||||||||||||||
CD (<.0034%) | 102Sn, 12C | ||||||||||||||||||
115Ba | 56 | 59 | 114.94748(22)# | 0.45(5) s | β+ | 115Cs | 5/2+# | ||||||||||||
β+, p (>15%) | 114Xe | ||||||||||||||||||
116Ba | 56 | 60 | 115.94162(22)# | 1.3(2) s | β+ (97%) | 116Cs | 0+ | ||||||||||||
β+, p (3%) | 115Xe | ||||||||||||||||||
117Ba | 56 | 61 | 116.93832(27) | 1.75(7) s | β+ (87%) | 117Cs | (3/2+) | ||||||||||||
β+, p (13%) | 116Xe | ||||||||||||||||||
β+, α (0.024%) | 113I | ||||||||||||||||||
118Ba | 56 | 62 | 117.93323(22)# | 5.2(2) s | β+ | 118Cs | 0+ | ||||||||||||
119Ba | 56 | 63 | 118.93066(21) | 5.4(3) s | β+ (75%) | 119Cs | (5/2+) | ||||||||||||
β+, p (25%) | 118Xe | ||||||||||||||||||
120Ba | 56 | 64 | 119.92604(32) | 24(2) s | β+ | 120Cs | 0+ | ||||||||||||
121Ba | 56 | 65 | 120.92405(15) | 29.7(15) s | β+ (99.98%) | 121Cs | 5/2+ | ||||||||||||
β+, p (0.02%) | 120Xe | ||||||||||||||||||
122Ba | 56 | 66 | 121.91990(3) | 1.95(15) min | β+ | 122Cs | 0+ | ||||||||||||
123Ba | 56 | 67 | 122.918781(13) | 2.7(4) min | β+ | 123Cs | 5/2+ | ||||||||||||
123mBa | 120.95(8) keV | 830(60) ns | IT | 123Ba | 1/2+# | ||||||||||||||
124Ba | 56 | 68 | 123.915094(13) | 11.0(5) min | β+ | 124Cs | 0+ | ||||||||||||
125Ba | 56 | 69 | 124.914472(12) | 3.3(3) min | β+ | 125Cs | 1/2+ | ||||||||||||
125mBa | 120(20)# keV | 2.76(14) μs | IT | 125Ba | (7/2−) | ||||||||||||||
126Ba | 56 | 70 | 125.911250(13) | 100(2) min | β+ | 126Cs | 0+ | ||||||||||||
127Ba | 56 | 71 | 126.911091(12) | 12.7(4) min | β+ | 127Cs | 1/2+ | ||||||||||||
127mBa | 80.32(11) keV | 1.93(7) s | IT | 127Ba | 7/2− | ||||||||||||||
128Ba | 56 | 72 | 127.9083524(17) | 2.43(5) d | EC | 128Cs | 0+ | ||||||||||||
129Ba | 56 | 73 | 128.908683(11) | 2.23(11) h | β+ | 129Cs | 1/2+ | ||||||||||||
129mBa | 8.42(6) keV | 2.135(10) h | β+ | 129Cs | 7/2+ | ||||||||||||||
IT | 129Ba | ||||||||||||||||||
130Ba [n 9] | 56 | 74 | 129.9063260(3) | ≈ 1×1021 y | 2EC? | 130Xe | 0+ | 0.0011(1) | |||||||||||
130mBa | 2475.12(18) keV | 9.54(14) ms | IT | 130Ba | 8− | ||||||||||||||
131Ba | 56 | 75 | 130.9069463(4) | 11.52(1) d | β+ | 131Cs | 1/2+ | ||||||||||||
131mBa | 187.995(9) keV | 14.26(9) min | IT | 131Ba | 9/2− | ||||||||||||||
132Ba | 56 | 76 | 131.9050612(11) | Observationally Stable [n 10] | 0+ | 0.0010(1) | |||||||||||||
133Ba | 56 | 77 | 132.9060074(11) | 10.5379(16) y | EC | 133Cs | 1/2+ | ||||||||||||
133mBa | 288.252(9) keV | 38.90(6) h | IT (99.99%) | 133Ba | 11/2− | ||||||||||||||
EC (0.0104%) | 133Cs | ||||||||||||||||||
134Ba | 56 | 78 | 133.90450825(27) | Stable | 0+ | 0.0242(15) | |||||||||||||
134mBa | 2957.2(5) keV | 2.61(13) μs | IT | 134Ba | 10+ | ||||||||||||||
135Ba | 56 | 79 | 134.90568845(26) | Stable | 3/2+ | 0.0659(10) | |||||||||||||
135m1Ba | 268.218(20) keV | 28.11(2) h | IT | 135Ba | 11/2− | ||||||||||||||
135m2Ba | 2388.0(5) keV | 1.06(4) ms | IT | 135Ba | (23/2+) | ||||||||||||||
136Ba | 56 | 80 | 135.90457580(26) | Stable | 0+ | 0.0785(24) | |||||||||||||
136m1Ba | 2030.535(18) keV | 308.4(19) ms | IT | 136Ba | 7− | ||||||||||||||
136m2Ba | 3357.19(25) keV | 91(2) ns | IT | 136Ba | 10+ | ||||||||||||||
137Ba | 56 | 81 | 136.90582721(27) | Stable | 3/2+ | 0.1123(23) | |||||||||||||
137m1Ba | 661.659(3) keV | 2.552(1) min | IT | 137Ba | 11/2− | ||||||||||||||
137m2Ba | 2349.1(5) keV | 589(20) ns | IT | 137Ba | (19/2−) | ||||||||||||||
138Ba [n 11] | 56 | 82 | 137.90524706(27) | Stable | 0+ | 0.7170(29) | |||||||||||||
138mBa | 2090.536(21) keV | 850(100) ns | IT | 138Ba | 6+ | ||||||||||||||
139Ba [n 11] | 56 | 83 | 138.90884116(27) | 82.93(9) min | β− | 139La | 7/2− | ||||||||||||
140Ba [n 11] | 56 | 84 | 139.910608(8) | 12.7534(21) d | β− | 140La | 0+ | ||||||||||||
141Ba [n 11] | 56 | 85 | 140.914404(6) | 18.27(7) min | β− | 141La | 3/2− | ||||||||||||
142Ba [n 11] | 56 | 86 | 141.916433(6) | 10.6(2) min | β− | 142La | 0+ | ||||||||||||
143Ba [n 11] | 56 | 87 | 142.920625(7) | 14.5(3) s | β− | 143La | 5/2− | ||||||||||||
144Ba [n 11] | 56 | 88 | 143.922955(8) | 11.73(8) s | β− | 144La | 0+ | ||||||||||||
145Ba | 56 | 89 | 144.927518(9) | 4.31(16) s | β− | 145La | 5/2− | ||||||||||||
146Ba | 56 | 90 | 145.9303632(19) | 2.15(4) s | β− | 146La | 0+ | ||||||||||||
147Ba | 56 | 91 | 146.935304(21) | 893(1) ms | β− (99.93%) | 147La | 5/2− | ||||||||||||
β−, n (0.07%) | 146La | ||||||||||||||||||
148Ba | 56 | 92 | 147.9382230(16) | 620(5) ms | β− (99.6%) | 148La | 0+ | ||||||||||||
β−, n (0.4%) | 147La | ||||||||||||||||||
149Ba | 56 | 93 | 148.9432840(27) | 349(4) ms | β− (96.1%) | 149La | 3/2−# | ||||||||||||
β−, n (3.9%) | 148La | ||||||||||||||||||
150Ba | 56 | 94 | 149.946441(6) | 258(5) ms | β− (99.0%) | 150La | 0+ | ||||||||||||
β−, n (1.0%) | 149La | ||||||||||||||||||
151Ba | 56 | 95 | 150.95176(43)# | 167(5) ms | β− | 151La | 3/2−# | ||||||||||||
β−, n? | 150La | ||||||||||||||||||
152Ba | 56 | 96 | 151.95533(43)# | 139(8) ms | β− | 152La | 0+ | ||||||||||||
β−, n? | 151La | ||||||||||||||||||
153Ba | 56 | 97 | 152.96085(43)# | 113(39) ms | β− | 153La | 5/2−# | ||||||||||||
β−, n? | 152La | ||||||||||||||||||
β−, 2n? | 151La | ||||||||||||||||||
154Ba | 56 | 98 | 153.96466(54)# | 53(48) ms | β− | 154La | 0+ | ||||||||||||
This table header & footer: |
CD: | Cluster decay |
EC: | Electron capture |
IT: | Isomeric transition |
n: | Neutron emission |
p: | Proton emission |
Protactinium (91Pa) has no stable isotopes. The four naturally occurring isotopes allow a standard atomic weight to be given.
Bismuth (83Bi) has 41 known isotopes, ranging from 184Bi to 224Bi. Bismuth has no stable isotopes, but does have one very long-lived isotope; thus, the standard atomic weight can be given as 208.98040(1). Although bismuth-209 is now known to be radioactive, it has classically been considered to be a stable isotope because it has a half-life of approximately 2.01×1019 years, which is more than a billion times the age of the universe. Besides 209Bi, the most stable bismuth radioisotopes are 210mBi with a half-life of 3.04 million years, 208Bi with a half-life of 368,000 years and 207Bi, with a half-life of 32.9 years, none of which occurs in nature. All other isotopes have half-lives under 1 year, most under a day. Of naturally occurring radioisotopes, the most stable is radiogenic 210Bi with a half-life of 5.012 days. 210mBi is unusual for being a nuclear isomer with a half-life multiple orders of magnitude longer than that of the ground state.
There are seven stable isotopes of mercury (80Hg) with 202Hg being the most abundant (29.86%). The longest-lived radioisotopes are 194Hg with a half-life of 444 years, and 203Hg with a half-life of 46.612 days. Most of the remaining 40 radioisotopes have half-lives that are less than a day. 199Hg and 201Hg are the most often studied NMR-active nuclei, having spin quantum numbers of 1/2 and 3/2 respectively. All isotopes of mercury are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed. These isotopes are predicted to undergo either alpha decay or double beta decay.
Naturally occurring platinum (78Pt) consists of five stable isotopes (192Pt, 194Pt, 195Pt, 196Pt, 198Pt) and one very long-lived (half-life 4.83×1011 years) radioisotope (190Pt). There are also 34 known synthetic radioisotopes, the longest-lived of which is 193Pt with a half-life of 50 years. All other isotopes have half-lives under a year, most under a day. All isotopes of platinum are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed. Platinum-195 is the most abundant isotope.
Naturally occurring tungsten (74W) consists of five isotopes. Four are considered stable (182W, 183W, 184W, and 186W) and one is slightly radioactive, 180W, with an extremely long half-life of 1.8 ± 0.2 exayears (1018 years). On average, two alpha decays of 180W occur per gram of natural tungsten per year, so for most practical purposes, 180W can be considered stable. Theoretically, all five can decay into isotopes of element 72 (hafnium) by alpha emission, but only 180W has been observed to do so. The other naturally occurring isotopes have not been observed to decay (they are observationally stable), and lower bounds for their half-lives have been established:
Natural hafnium (72Hf) consists of five observationally stable isotopes (176Hf, 177Hf, 178Hf, 179Hf, and 180Hf) and one very long-lived radioisotope, 174Hf, with a half-life of 7.0×1016 years. In addition, there are 34 known synthetic radioisotopes, the most stable of which is 182Hf with a half-life of 8.9×106 years. This extinct radionuclide is used in hafnium–tungsten dating to study the chronology of planetary differentiation.
Naturally occurring lutetium (71Lu) is composed of one stable isotope 175Lu and one long-lived radioisotope, 176Lu with a half-life of 37 billion years. Forty radioisotopes have been characterized, with the most stable, besides 176Lu, being 174Lu with a half-life of 3.31 years, and 173Lu with a half-life of 1.37 years. All of the remaining radioactive isotopes have half-lives that are less than 9 days, and the majority of these have half-lives that are less than half an hour. This element also has 18 meta states, with the most stable being 177mLu, 174mLu and 178mLu.
Natural holmium (67Ho) contains one observationally stable isotope, 165Ho. The below table lists 36 isotopes spanning 140Ho through 175Ho as well as 33 nuclear isomers. Among the known synthetic radioactive isotopes; the most stable one is 163Ho, with a half-life of 4,570 years. All other radioisotopes have half-lives not greater than 1.117 days in their ground states, and most have half-lives under 3 hours.
Naturally occurring gadolinium (64Gd) is composed of 6 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd, 158Gd and 160Gd, and 1 radioisotope, 152Gd, with 158Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of 160Gd has never been observed; only a lower limit on its half-life of more than 1.3×1021 years has been set experimentally.
Naturally occurring cerium (58Ce) is composed of 4 stable isotopes: 136Ce, 138Ce, 140Ce, and 142Ce, with 140Ce being the most abundant and the only one theoretically stable; 136Ce, 138Ce, and 142Ce are predicted to undergo double beta decay but this process has never been observed. There are 35 radioisotopes that have been characterized, with the most stable being 144Ce, with a half-life of 284.893 days; 139Ce, with a half-life of 137.640 days and 141Ce, with a half-life of 32.501 days. All of the remaining radioactive isotopes have half-lives that are less than 4 days and the majority of these have half-lives that are less than 10 minutes. This element also has 10 meta states.
Naturally occurring lanthanum (57La) is composed of one stable (139La) and one radioactive (138La) isotope, with the stable isotope, 139La, being the most abundant (99.91% natural abundance). There are 39 radioisotopes that have been characterized, with the most stable being 138La, with a half-life of 1.02×1011 years; 137La, with a half-life of 60,000 years and 140La, with a half-life of 1.6781 days. The remaining radioactive isotopes have half-lives that are less than a day and the majority of these have half-lives that are less than 1 minute. This element also has 12 nuclear isomers, the longest-lived of which is 132mLa, with a half-life of 24.3 minutes. Lighter isotopes mostly decay to isotopes of barium and heavy ones mostly decay to isotopes of cerium. 138La can decay to both.
Tin (50Sn) is the element with the greatest number of stable isotopes. This is probably related to the fact that 50 is a "magic number" of protons. In addition, twenty-nine unstable tin isotopes are known, including tin-100 (100Sn) and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.
Indium (49In) consists of two primordial nuclides, with the most common (~ 95.7%) nuclide (115In) being measurably though weakly radioactive. Its spin-forbidden decay has a half-life of 4.41×1014 years, much longer than the currently accepted age of the Universe.
Natural palladium (46Pd) is composed of six stable isotopes, 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, although 102Pd and 110Pd are theoretically unstable. The most stable radioisotopes are 107Pd with a half-life of 6.5 million years, 103Pd with a half-life of 17 days, and 100Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u (91Pd) to 128.96 u (129Pd). Most of these have half-lives that are less than 30 minutes except 101Pd, 109Pd, and 112Pd.
The alkaline earth metal strontium (38Sr) has four stable, naturally occurring isotopes: 84Sr (0.56%), 86Sr (9.86%), 87Sr (7.0%) and 88Sr (82.58%). Its standard atomic weight is 87.62(1).
Selenium (34Se) has six natural isotopes that occur in significant quantities, along with the trace isotope 79Se, which occurs in minute quantities in uranium ores. Five of these isotopes are stable: 74Se, 76Se, 77Se, 78Se, and 80Se. The last three also occur as fission products, along with 79Se, which has a half-life of 327,000 years, and 82Se, which has a very long half-life (~1020 years, decaying via double beta decay to 82Kr) and for practical purposes can be considered to be stable. There are 23 other unstable isotopes that have been characterized, the longest-lived being 79Se with a half-life 327,000 years, 75Se with a half-life of 120 days, and 72Se with a half-life of 8.40 days. Of the other isotopes, 73Se has the longest half-life, 7.15 hours; most others have half-lives not exceeding 38 seconds.
Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 28 radioisotopes. The most stable radioisotope is 67Cu with a half-life of 61.83 hours. Most of the others have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β+ decay, while isotopes with atomic masses above 65 tend to undergo β− decay. 64Cu decays by both β+ and β−.
Naturally occurring chromium (24Cr) is composed of four stable isotopes; 50Cr, 52Cr, 53Cr, and 54Cr with 52Cr being the most abundant (83.789% natural abundance). 50Cr is suspected of decaying by β+β+ to 50Ti with a half-life of (more than) 1.8×1017 years. Twenty-two radioisotopes, all of which are entirely synthetic, have been characterized, the most stable being 51Cr with a half-life of 27.7 days. All of the remaining radioactive isotopes have half-lives that are less than 24 hours and the majority of these have half-lives that are less than 1 minute. This element also has two meta states, 45mCr, the more stable one, and 59mCr, the least stable isotope or isomer.
Naturally occurring scandium (21Sc) is composed of one stable isotope, 45Sc. Twenty-seven radioisotopes have been characterized, with the most stable being 46Sc with a half-life of 83.8 days, 47Sc with a half-life of 3.35 days, and 48Sc with a half-life of 43.7 hours and 44Sc with a half-life of 3.97 hours. All the remaining isotopes have half-lives that are less than four hours, and the majority of these have half-lives that are less than two minutes, the least stable being proton unbound 39Sc with a half-life shorter than 300 nanoseconds. This element also has 13 meta states with the most stable being 44m2Sc.
Mendelevium (101Md) is a synthetic element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 256Md in 1955. There are 17 known radioisotopes, ranging in atomic mass from 244Md to 260Md, and 5 isomers. The longest-lived isotope is 258Md with a half-life of 51.3 days, and the longest-lived isomer is 258mMd with a half-life of 57 minutes.