Isotopes of lutetium

Last updated

Isotopes of lutetium  (71Lu)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
173Lu synth 1.37 y ε 173Yb
174Lusynth3.31 y β+ 174Yb
175Lu97.4% stable
176Lu2.60%3.701×1010 y β 176Hf
177Lusynth6.6443 dβ 177Hf
Standard atomic weight Ar°(Lu)

Naturally occurring lutetium (71Lu) is composed of one stable isotope 175Lu (97.40% natural abundance) and one long-lived radioisotope, 176Lu with a half-life of 37 billion years (2.60% natural abundance). Forty radioisotopes have been characterized, with the most stable, besides 176Lu, being 174Lu with a half-life of 3.31 years, and 173Lu with a half-life of 1.37 years. All of the remaining radioactive isotopes have half-lives that are less than 9 days, and the majority of these have half-lives that are less than half an hour. This element also has 18 meta states, with the most stable being 177m3Lu (t1/2 160.4 days), 174mLu (t1/2 142 days) and 178mLu (t1/2 23.1 minutes).

Contents

The known isotopes of lutetium range in mass number from 149 to 190. The primary decay mode before the most abundant stable isotope, 175Lu, is electron capture (with some alpha and positron emission), and the primary mode after is beta emission. The primary decay products before 175Lu are isotopes of ytterbium and the primary products after are isotopes of hafnium. All isotopes of lutetium are either radioactive or, in the case of 175Lu, observationally stable, meaning that 175Lu is predicted to be radioactive but no actual decay has been observed. [4]

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [5]
[n 2] [n 3]
Half-life [1]
[n 4] [n 5]
Decay
mode
[1]
[n 6]
Daughter
isotope

[n 7]
Spin and
parity [1]
[n 8] [n 5]
Natural abundance (mole fraction)
Excitation energy [n 5] Normal proportion [1] Range of variation
149Lu [6] 7178450+170
−100
 ns
p 148Yb11/2−
150Lu7179149.97341(32)#45(3) msp149Yb(5−)
150mLu22(5) keV40(7) μsp149Yb(8+)
151Lu7180150.96747(32)#78.4(9) msp (?%)150Yb11/2−
β+ (?%)151Yb
151mLu57(4) keV16.0(5) μsp150Yb3/2+
152Lu7181151.96412(21)#650(70) msβ+ (85%)152Yb(4−, 5−, 6−)
β+, p (15%)151Tm
153Lu7182152.95880(16)0.9(2) s α (?%)149Tm11/2−
β+ (?%)153Yb
153m1Lu80(5) keV1# s IT 153Lu1/2+
153m2Lu2502.5(4) keV>0.1 μsIT153Lu23/2−
153m3Lu2632.9(5) keV15(3) μsIT153Lu27/2−
154Lu7183153.95742(22)#1# s(2−)
154m1Lu62(12) keV1.12(8) sβ+ (?%)154Yb(9+)
β+p (?%)153Tm
β+α (?%)150Er
154m2Lu2724(100)# keV35(3) μsIT154Lu(17+)
155Lu7184154.954326(21)68(2) msα (90%)151Tm11/2−
β+ (10%)155Yb
155m1Lu21(4) keV138(9) msα (76%)151Tm1/2+
β+ (24%)155Yb
155m2Lu1780.3(18) keV2.69(3) msα151Tm25/2−#
156Lu7185155.953087(58)494(12) msα152Tm(2)−
156m1Lu [n 9] 10(250) keV198(2) msα152Tm10+
156m2Lu2611(250) keV179(4) nsIT156Lu19−
157Lu7186156.950145(13)7.7(20) sβ+ (?%)157Yb(1/2+)
α (?%)153Tm
157mLu20.9(20) keV4.79(12) sβ+ (92.3%)157Yb(11/2−)
α (7.7%)153Tm
158Lu7187157.949316(16)10.6(3) sβ+ (99.09%)158Yb(2)−
α (0.91%)154Tm
159Lu7188158.946636(40)12.1(10) sβ+159Yb1/2+
α (rare)155Tm
160Lu7189159.946033(61)36.1(3) sβ+160Yb2−#
160mLu [n 9] 0(100)# keV40(1) sβ+160Yb
161Lu7190160.943572(30)77(2) sβ+161Yb1/2+
161mLu182(5)# keV7.3(4) msIT161Lu(9/2−)
162Lu7191161.943283(81)1.37(2) minβ+162Yb1−
162m1Lu [n 9] 120(200)# keV1.5 minβ+162Yb4−#
162m2Lu [n 10] 300(200)# keV1.9 min9−#
163Lu7192162.941179(30)3.97(13) minβ+163Yb1/2+
164Lu7193163.941339(30)3.14(3) minβ+164Yb1−
165Lu7194164.939407(28)10.74(10) minβ+165Yb1/2+
166Lu7195165.939859(32)2.65(10) minβ+166Yb6−
166m1Lu34.37(22) keV1.41(10) minβ+ (58%)166Yb3−
IT (42%)166Lu
166m2Lu43.0(4) keV2.12(10) minβ+ (90%)166Yb0−
IT (10%)166Lu
167Lu7196166.938243(40)51.5(10) minβ+167Yb7/2+
167mLu50(40)# keV>1 min1/2+
168Lu7197167.938730(41)5.5(1) minβ+168Yb6−
168mLu160(40) keV6.7(4) minβ+168Yb3+
169Lu7198168.9376458(32)34.06(5) hβ+169Yb7/2+
169mLu29.0(5) keV160(10) sIT169Lu1/2−
170Lu7199169.938479(18)2.012(30) dβ+170Yb0+
170mLu92.91(9) keV670(100) msIT170Lu4−
171Lu71100170.9379186(20)8.247(23) dβ+171Yb7/2+
171mLu71.13(8) keV79(2) sIT171Lu1/2−
172Lu71101171.9390913(25)6.70(3) dβ+172Yb4−
172m1Lu41.86(4) keV3.7(5) minIT172Lu1−
172m2Lu65.79(4) keV332(20) nsIT172Lu(1)+
172m3Lu109.41(10) keV440(12) μsIT172Lu(1)+
172m4Lu213.57(17) keV150 nsIT172Lu(6−)
173Lu71102172.9389357(17)1.37(1) y EC 173Yb7/2+
173mLu123.672(13) keV74.2(10) μsIT173Lu5/2−
174Lu71103173.9403428(17)3.31(5) yβ+174Yb1−
174m1Lu170.83(5) keV142(2) dIT (99.38%)174Lu6−
EC (0.62%)174Yb
174m2Lu240.818(4) keV395(15) nsIT174Lu3+
174m3Lu365.183(6) keV145(3) nsIT174Lu4−
174m4Lu1855.7(5) keV194(24) nsIT174Lu13+
174m5Lu4068.4(9) keV97(10) nsIT174Lu(21+)
174m6Lu5849.6(9) keV242(19) nsIT174Lu(26−)
175Lu71104174.9407772(13) Observationally stable [n 11] 7/2+0.97401(13)
175m1Lu353.48(13) keV1.49(7) μsIT175Lu5/2−
175m2Lu1392.4(4) keV984(30) μsIT175Lu19/2+
176Lu [n 12] [n 13] 71105175.9426917(13)3.701(17)×1010 yβ [n 14] 176Hf7−0.02599(13)
176m1Lu122.845(4) keV3.664(19) hβ (99.90%)176Hf1−
EC (0.095%)176Yb
176m2Lu1514.5(5) keV312(69) nsIT176Lu12+
176m3Lu1587.8(6) keV40(3) μsIT176Lu14+
177Lu71106176.9437636(13)6.6443(9) dβ177Hf7/2+
177m1Lu150.3984(10) keV130.1(24) nsIT177Lu9/2−
177m2Lu569.6721(15) keV155(7) μsIT177Lu1/2+
177m3Lu970.1757(24) keV160.4(3) dβ (77.30%)177Hf23/2−
IT (22.70%)177Lu
177m4Lu2771.7(5) keV625(62) nsIT177Lu33/2+
177m5Lu3530.4(6) keV6(2) μsIT177Lu39/2−
178Lu71107177.9459601(24)28.4(2) minβ178Hf1+
178mLu123.8(26) keV23.1(3) minβ178Hf9−
179Lu71108178.9473330(55)4.59(6) hβ179Hf7/2+
179mLu592.4(4) keV3.1(9) msIT179Lu1/2+
180Lu71109179.949891(76)5.7(1) minβ180Hf5+
180m1Lu13.9(3) keV~1 s3−
180m2Lu624.0(5) keV>1 msIT180Lu(9−)
181Lu71110180.95191(14)3.5(3) minβ181Hf7/2+#
182Lu71111181.95516(22)#2.0(2) minβ182Hf1−#
183Lu71112182.957363(86)58(4) sβ183Hf7/2+#
184Lu71113183.96103(22)#20(3) sβ184Hf(3+)
185Lu71114184.96354(32)#20# s
[>300 ns]
7/2+#
186Lu71115185.96745(43)#6# s
[>300 ns]
187Lu71116186.97019(43)#7# s
[>300 ns]
7/2+#
188Lu71117187.97443(43)#1# s
[>300 ns]
189Lu [8] 71118
190Lu [9] 71119
This table header & footer:
  1. mLu  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life  nearly stable, half-life longer than age of universe.
  5. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    p: Proton emission
  7. Bold symbol as daughter  Daughter product is stable.
  8. () spin value  Indicates spin with weak assignment arguments.
  9. 1 2 3 Order of ground state and isomer is uncertain.
  10. Discovery of this isotope is disputed.
  11. Believed to undergo α decay to 171Tm
  12. primordial radionuclide
  13. Used in lutetium-hafnium dating
  14. Theoretically capable of electron capture to 176Yb [7] or α decay to 172Tm

Lutetium-177

Lutetium (177Lu) chloride, sold under the brand name Lumark among others, is used for radiolabeling other medicines, either as an anti-cancer therapy or for scintigraphy (medical radio-imaging). Its most common side effects are anaemia (low red blood cell counts), thrombocytopenia (low blood platelet counts), leucopenia (low white blood cell counts), lymphopenia (low levels of lymphocytes, a particular type of white blood cell), nausea (feeling sick), vomiting and mild and temporary hair loss. [10] [11]

See also

Daughter products other than lutetium

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Lutetium". CIAAW. 2024.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (8): 140–1–140–7. arXiv: 1908.11458 . Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. ISSN   1434-601X. S2CID   201664098.
  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. Auranen, K. (16 March 2022). "Nanosecond-Scale Proton Emission from Strongly Oblate-Deformed 149Lu". Physical Review Letters. 128 (11): 2501. Bibcode:2022PhRvL.128k2501A. doi:10.1103/PhysRevLett.128.112501. PMID   35363028. S2CID   247855967.
  7. Nozzoli, Francesco; Ghezzer, Luigi Ernesto; Nicolaidis, Riccardo; Iuppa, Roberto; Zuccon, Paolo; et al. (European Nuclear Physics Conference (EuNPC 2022)) (8 December 2023). "Investigation of Electron Capture in 176Lu with a LYSO crystal scintillator". EPJ Web of Conf. 290 (01002). arXiv: 2211.15203 . doi:10.1051/epjconf/202329001002.
  8. Haak, K.; Tarasov, O. B.; Chowdhury, P.; et al. (2023). "Production and discovery of neutron-rich isotopes by fragmentation of 198Pt". Physical Review C. 108 (34608): 034608. Bibcode:2023PhRvC.108c4608H. doi:10.1103/PhysRevC.108.034608. S2CID   261649436.
  9. Tarasov, O. B.; Gade, A.; Fukushima, K.; et al. (2024). "Observation of New Isotopes in the Fragmentation of 198Pt at FRIB". Physical Review Letters. 132 (072501). doi:10.1103/PhysRevLett.132.072501.
  10. "Lumark EPAR". European Medicines Agency. 17 September 2018. Retrieved 7 May 2020. Text was copied from this source for which copyright belongs to the European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  11. "EndolucinBeta EPAR". European Medicines Agency (EMA). 17 September 2018. Retrieved 7 May 2020. Text was copied from this source for which copyright belongs to the European Medicines Agency. Reproduction is authorized provided the source is acknowledged.