This article needs additional citations for verification .(May 2018) |
| |||||||||||||||||||||
Standard atomic weight Ar°(Al) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aluminium or aluminum (13Al) has one stable isotope, 27Al, comprising all natural aluminium. The radioactive 26Al, with half-life 717,000 years, occurs in traces from cosmic-ray spallation of argon in the atmosphere.
Other than 26Al, there are 22 known synthetic radioisotopes from 20Al to 43Al, and 4 known metastable states; all have half-lives under 7 minutes, most under a second.
26Al is an extinct radionuclide and has received attention as such, being used in the study of meteorites. Its terrestrial occurrence has also found practical application in dating marine sediments, manganese nodules, glacial ice, quartz in rock exposures, and meteorites. The ratio of 26Al to 10Be has been used to study the role of sediment transport, deposition, and storage, as well as burial times, and erosion, on 105 to 106 year time scales. [4]
Nuclide [n 1] | Z | N | Isotopic mass (Da) [5] [n 2] [n 3] | Half-life [1] | Decay mode [1] [n 4] | Daughter isotope [n 5] | Spin and parity [1] [n 6] [n 7] | Isotopic abundance | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy [n 7] | |||||||||||||||||||
20Al [6] | 13 | 7 | 20.04326(13) | >1.1 zs | p | 19Mg | (1−) | ||||||||||||
21Al [7] | 13 | 8 | 21.0278(13) | >1.1 zs | p | 20Mg | (5/2+) | ||||||||||||
22Al | 13 | 9 | 22.01942310(32) [8] | 91.1(5) ms | β+, p (55%) | 21Na | (4)+ | ||||||||||||
β+ (44%) | 22Mg | ||||||||||||||||||
β+, 2p (1.10%) | 20Ne | ||||||||||||||||||
β+, α (0.038%) | 18Ne | ||||||||||||||||||
23Al | 13 | 10 | 23.00724435(37) | 446(6) ms | β+ (98.78%) | 23Mg | 5/2+ | ||||||||||||
β+, p (1.22%) | 22Na | ||||||||||||||||||
24Al | 13 | 11 | 23.99994760(24) | 2.053(4) s | β+ (99.96%) | 24Mg | 4+ | ||||||||||||
β+, α (0.035%) | 20Ne | ||||||||||||||||||
β+, p (0.0016%) | 23Na | ||||||||||||||||||
24mAl | 425.8(1) keV | 130(3) ms | IT (82.5%) | 24Al | 1+ | ||||||||||||||
β+ (17.5%) | 24Mg | ||||||||||||||||||
β+, α (0.028%) | 20Ne | ||||||||||||||||||
25Al | 13 | 12 | 24.990428308(69) | 7.1666(23) s | β+ | 25Mg | 5/2+ | ||||||||||||
26Al [n 8] | 13 | 13 | 25.986891876(71) | 7.17(24)×105 y | β+ (85%) | 26Mg | 5+ | Trace [n 9] | |||||||||||
EC (15%) [9] | |||||||||||||||||||
26mAl | 228.306(13) keV | 6.3460(5) s | β+ | 26Mg | 0+ | ||||||||||||||
27Al | 13 | 14 | 26.981538408(50) | Stable | 5/2+ | 1.0000 | |||||||||||||
28Al | 13 | 15 | 27.981910009(52) | 2.245(5) min | β− | 28Si | 3+ | ||||||||||||
29Al | 13 | 16 | 28.98045316(37) | 6.56(6) min | β− | 29Si | 5/2+ | ||||||||||||
30Al | 13 | 17 | 29.9829692(21) | 3.62(6) s | β− | 30Si | 3+ | ||||||||||||
31Al | 13 | 18 | 30.9839498(24) | 644(25) ms | β− (>98.4%) | 31Si | 5/2+ | ||||||||||||
β−, n (<1.6%) | 30Si | ||||||||||||||||||
32Al | 13 | 19 | 31.9880843(77) | 32.6(5) ms | β− (99.3%) | 32Si | 1+ | ||||||||||||
β−, n (0.7%) | 31Si | ||||||||||||||||||
32mAl | 956.6(5) keV | 200(20) ns | IT | 32Al | (4+) | ||||||||||||||
33Al | 13 | 20 | 32.9908777(75) | 41.46(9) ms | β− (91.5%) | 33Si | 5/2+ | ||||||||||||
β−, n (8.5%) | 32Si | ||||||||||||||||||
34Al | 13 | 21 | 33.9967819(23) | 53.73(13) ms | β− (74%) | 34Si | 4− | ||||||||||||
β−, n (26%) | 33Si | ||||||||||||||||||
34mAl | 46.4(17) keV | 22.1(2) ms | β− (89%) | 34Si | 1+ | ||||||||||||||
β−, n (11%) | 33Si | ||||||||||||||||||
35Al | 13 | 22 | 34.9997598(79) | 38.16(21) ms | β− (64.2%) | 35Si | (5/2+,3/2+) | ||||||||||||
β−, n (35.8%) | 34Si | ||||||||||||||||||
36Al | 13 | 23 | 36.00639(16) | 90(40) ms | β− (>69%) | 36Si | |||||||||||||
β−, n (<31%) | 35Si | ||||||||||||||||||
37Al | 13 | 24 | 37.01053(19) | 11.4(3) ms | β−, n (52%) | 36Si | 5/2+# | ||||||||||||
β− (<47%) | 37Si | ||||||||||||||||||
β−, 2n (>1%) | 35Si | ||||||||||||||||||
38Al | 13 | 25 | 38.01768(16)# | 9.0(7) ms | β−, n (84%) | 37Si | 0−# | ||||||||||||
β− (16%) | 38Si | ||||||||||||||||||
39Al | 13 | 26 | 39.02307(32)# | 7.6(16) ms | β−, n (97%) | 38Si | 5/2+# | ||||||||||||
β− (3%) | 39Si | ||||||||||||||||||
40Al | 13 | 27 | 40.03094(32)# | 5.7(3 (stat), 2 (sys)) ms [10] | β−, n (64%) | 39Si | |||||||||||||
β−, 2n (20%) | 38Si | ||||||||||||||||||
β− (16%) | 40Si | ||||||||||||||||||
41Al | 13 | 28 | 41.03713(43)# | 3.5(8 (stat), 4 (sys)) ms [10] | β−, n (86%) | 40Si | 5/2+# | ||||||||||||
β−, 2n (11%) | 39Si | ||||||||||||||||||
β− (3%) | 41Si | ||||||||||||||||||
42Al | 13 | 29 | 42.04508(54)# | 3# ms [>170 ns] | |||||||||||||||
43Al | 13 | 30 | 43.05182(64)# | 4# ms [>170 ns] | β−? | 43Si | 5/2+# | ||||||||||||
This table header & footer: |
IT: | Isomeric transition |
Cosmogenic aluminium-26 was first described in studies of the Moon and meteorites. Meteorite fragments, after departure from their parent bodies, are exposed to intense cosmic-ray bombardment during their travel through space, causing substantial 26Al production. After falling to Earth, atmospheric shielding protects the meteorite fragments from further 26Al production, and its decay can then be used to determine the meteorite's terrestrial age. Meteorite research has also shown that 26Al was relatively abundant at the time of formation of our planetary system. Most meteoriticists believe that the energy released by the decay of 26Al was responsible for the melting and differentiation of some asteroids after their formation 4.55 billion years ago. [13]
Daughter products other than aluminum
{{cite journal}}
: CS1 maint: article number as page number (link)