Isotopes of selenium

Last updated

Isotopes of selenium  (34Se)
Main isotopes [1] Decay
Isotope abun­dance half-life (t1/2) mode pro­duct
72Se synth 8.40 dε 72As
74Se0.860% stable
75Sesynth119.78 dε 75As
76Se9.23%stable
77Se7.60%stable
78Se23.7%stable
79Se trace 3.27×105 y β 79Br
80Se49.8%stable
82Se8.82%8.76×1019 y ββ 82Kr
Standard atomic weight Ar°(Se)

Selenium has six natural isotopes that occur in significant quantities, along with the trace isotope 79Se, which occurs in minute quantities in uranium ores. Five of these isotopes are stable: 74Se, 76Se, 77Se, 78Se, and 80Se. The last three also occur as fission products, along with 79Se, which has a half-life about 330,000 years, [4] and 82Se, which has the very long half-life of 8.76×1019 years as it decays via double beta decay to krypton-82 and for practical purposes can be considered to be stable. There are 23 other unstable isotopes that have been characterized, the longest-lived after 79Se being 75Se with its half-life 119.78 days, 72Se at 8.40 days, and 73Se at 7.15 hours. The others are all under an hour and most do not exceed 38 seconds.

Contents

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da) [5]
[n 2] [n 3]
Half-life [1]
[n 4] [n 5]
Decay
mode
[1]
[n 6]
Daughter
isotope

[n 7]
Spin and
parity [1]
[n 8] [n 5]
Natural abundance (mole fraction)
Excitation energyNormal proportion [1] Range of variation
63Se342962.98191(54)#13.2(39) ms β+, p (89%)62Ge3/2−#
β+ (11%)63As
2p? (<0.5%)61Ge
64Se343063.97117(54)#22.6(2) msβ+?64As0+
β+, p?63Ge
65Se343164.96455(32)#34.2(7) msβ+, p (87%)64Ge3/2−#
β+ (13%)65As
66Se343265.95528(22)#54(4) msβ+66As0+
β+, p?65Ge
67Se343366.949994(72)133(4) msβ+ (99.5%)67As5/2−#
β+, p (0.5%)66Ge
68Se343467.94182524(53)35.5(7) sβ+68As0+
69Se343568.9394148(16)27.4(2) sβ+ (99.95%)69As1/2−
β+, p (.052%)68Ge
69m1Se38.85(22) keV2.0(2) μs IT 69Se5/2−
69m2Se574.0(4) keV955(16) nsIT69Se9/2+
70Se343669.9335155(17)41.1(3) minβ+70As0+
71Se343770.9322094(30)4.74(5) minβ+71As(5/2−)
71m1Se48.79(5) keV5.6(7) μsIT71Se(1/2−)
71m2Se260.48(10) keV19.0(5) μsIT71Se(9/2+)
72Se343871.9271405(21)8.40(8) d EC 72As0+
73Se343972.9267549(80)7.15(9) hβ+73As9/2+
73mSe25.71(4) keV39.8(17) minIT (72.6%)73Se3/2−
β+ (27.4%)73As
74Se344073.922475933(15) Observationally Stable [n 9] 0+0.0086(3)
75Se344174.922522870(78)119.78(3) dEC75As5/2+
76Se344275.919213702(17)Stable0+0.0923(7)
77Se [n 10] 344376.919914150(67)Stable1/2−0.0760(7)
77mSe161.9223(10) keV17.36(5) sIT77Se7/2+
78Se [n 10] 344477.91730924(19)Stable0+0.2369 (22)
79Se [n 11] 344578.91849925(24)3.27(28)×105 yβ79Br7/2+
79mSe95.77(3) keV3.900(18) minIT (99.94%)79Se1/2−
β (0.056%)79Br
80Se [n 10] 344679.9165218(10)Observationally Stable [n 12] 0+0.4980(36)
81Se [n 10] 344780.9179930(10)18.45(12) minβ81Br1/2−
81mSe [n 10] 103.00(6) keV57.28(2) minIT (99.95%)81Se7/2+
β (0.051%)81Br
82Se [n 10] [n 13] 344881.91669953(50)8.76(15)×1019 y ββ 82Kr0+0.0882(15)
83Se344982.9191186(33)22.25(4) minβ83Br9/2+
83mSe228.92(7) keV70.1(4) sβ83Br1/2−
84Se345083.9184668(21)3.26(10) minβ84Br0+
85Se345184.9222608(28)32.9(3) sβ85Br(5/2)+
86Se345285.9243117(27)14.3(3) sβ86Br0+
β, n?85Br
87Se345386.9286886(24)5.50(6) sβ (99.50%)87Br(3/2+)
β, n (0.60%)86Br
88Se345487.9314175(36)1.53(6) sβ (99.01%)88Br0+
β, n (0.99%)87Br
89Se345588.9366691(40)430(50) msβ (92.2%)89Br5/2+#
β, n (7.8%)88Br
90Se345689.94010(35)210(80) msβ90Br0+
β, n?89Br
91Se345790.94570(47)270(50) msβ (79%)91Br1/2+#
β, n (21%)90Br
β, 2n?89Br
92Se345891.94984(43)#90# ms [>300 ns]β?92Br0+
β, n?91Br
β, 2n?90Br
92mSe3072(2) keV15.7(7) μsIT92Se(9−)
93Se345992.95614(43)#130# ms [>300 ns]β?93Br1/2+#
β, n?92Br
β, 2n?91Br
93mSe678.2(7) keV420(100) nsIT93Se
94Se346093.96049(54)#50# ms [>300 ns]β?94Br0+
β, n?93Br
β, 2n?92Br
94mSe2430.0(6) keV680(50) nsIT94Se(7−)
95Se346194.96730(54)#70# ms [>400 ns]β?95Br3/2+#
β, n?94Br
β, 2n?93Br
96Se [6] 3462
97Se [6] 3463
This table header & footer:
  1. mSe  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life  nearly stable, half-life longer than age of universe.
  5. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  7. Bold symbol as daughter  Daughter product is stable.
  8. () spin value  Indicates spin with weak assignment arguments.
  9. Theoretically capable of β+β+ decay to 74Ge; half-life is above 2.3×1018 y.
  10. 1 2 3 4 5 6 Fission product
  11. Long-lived fission product
  12. Theoretically capable of ββ decay to 80Kr
  13. Primordial radionuclide

Use of radioisotopes

The isotope selenium-75 has radiopharmaceutical uses. For example, it is used in high-dose-rate endorectal brachytherapy, as an alternative to iridium-192. [7]

In paleobiogeochemistry, the ratio in amount of selenium-82 to selenium-76 (i.e, the value of δ82/76Se) can be used to track down the redox conditions on Earth during the Neoproterozoic era in order to gain a deeper understanding of the rapid oxygenation that trigger the emergence of complex organisms. [8] [9]

See also

Daughter products other than selenium

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3) 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Selenium". CIAAW. 2013.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Jorg, Gerhard; Buhnemann, Rolf; Hollas, Simon; Kivel, Niko; Kossert, Karsten; Van Winckel, Stefaan; Gostomski, Christoph Lierse v. (2010). "Preparation of radiochemically pure 79Se and highly precise determination of its half-life". Applied Radiation and Isotopes. 68 (12): 2339–51. doi:10.1016/j.apradiso.2010.05.006. PMID   20627600.
  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3) 030003. doi:10.1088/1674-1137/abddaf.
  6. 1 2 Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313.
  7. Shoemaker T; Vuong T; Glickman H; Kaifi S; Famulari G; Enger SA (2019). "Dosimetric Considerations for Ytterbium-169, Selenium-75, and Iridium-192 Radioisotopes in High-Dose-Rate Endorectal Brachytherapy". Int J Radiat Oncol Biol Phys. 105 (4): 875–883. doi:10.1016/j.ijrobp.2019.07.003. PMID   31330175. S2CID   198170324.
  8. Pogge von Strandmann, Philip A. E.; Stüeken, Eva E.; Elliott, Tim; Poulton, Simon W.; Dehler, Carol M.; Canfield, Don E.; Catling, David C. (2015-12-18). "Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere". Nature Communications. 6 (1) 10157. doi: 10.1038/ncomms10157 . ISSN   2041-1723. PMC   4703861 . PMID   26679529.
  9. Stüeken, Eva E. "Selenium isotopes as a biogeochemical proxy in deep time" (PDF). core.ac.uk.