Isotopes of selenium

Last updated
Isotopes of selenium  (34Se)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
72Se synth 8.4 d ε 72As
γ
74Se0.860% stable
75Sesynth119.8 dε 75As
γ
76Se9.23%stable
77Se7.60%stable
78Se23.7%stable
79Se trace 3.27×105 y β 79Br
80Se49.8%stable
82Se8.82%8.76×1019 y ββ 82Kr
Standard atomic weight Ar°(Se)

Selenium (34Se) has six natural isotopes that occur in significant quantities, along with the trace isotope 79Se, which occurs in minute quantities in uranium ores. Five of these isotopes are stable: 74Se, 76Se, 77Se, 78Se, and 80Se. The last three also occur as fission products, along with 79Se, which has a half-life of 327,000 years, [4] [5] and 82Se, which has a very long half-life (~1020 years, decaying via double beta decay to 82Kr) and for practical purposes can be considered to be stable. There are 23 other unstable isotopes that have been characterized, the longest-lived being 79Se with a half-life 327,000 years, 75Se with a half-life of 120 days, and 72Se with a half-life of 8.40 days. Of the other isotopes, 73Se has the longest half-life, 7.15 hours; most others have half-lives not exceeding 38 seconds.

Contents

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da) [6]
[n 2] [n 3]
Half-life [1]
[n 4] [n 5]
Decay
mode
[1]
[n 6]
Daughter
isotope

[n 7]
Spin and
parity [1]
[n 8] [n 5]
Natural abundance (mole fraction)
Excitation energyNormal proportion [1] Range of variation
63Se342962.98191(54)#13.2(39) ms β+, p (89%)62Ge3/2−#
β+ (11%)63As
2p? (<0.5%)61Ge
64Se343163.97117(54)#22.6(2) msβ+?64As0+
β+, p?63Ge
65Se343164.96455(32)#34.2(7) msβ+, p (87%)64Ge3/2−#
β+ (13%)65As
66Se343265.95528(22)#54(4) msβ+66As0+
β+, p?65Ge
67Se343366.949994(72)133(4) msβ+ (99.5%)67As5/2−#
β+, p (0.5%)66Ge
68Se343467.94182524(53)35.5(7) sβ+68As0+
69Se343568.9394148(16)27.4(2) sβ+ (99.95%)69As1/2−
β+, p (.052%)68Ge
69m1Se38.85(22) keV2.0(2) μs IT 69Se5/2−
69m2Se574.0(4) keV955(16) nsIT69Se9/2+
70Se343669.9335155(17)41.1(3) minβ+70As0+
71Se343770.9322094(30)4.74(5) minβ+71As(5/2−)
71m1Se48.79(5) keV5.6(7) μsIT71Se(1/2−)
71m2Se260.48(10) keV19.0(5) μsIT71Se(9/2+)
72Se343871.9271405(21)8.40(8) d EC 72As0+
73Se343972.9267549(80)7.15(9) hβ+73As9/2+
73mSe25.71(4) keV39.8(17) minIT (72.6%)73Se3/2−
β+ (27.4%)73As
74Se344073.922475933(15) Observationally Stable [n 9] 0+0.0086(3)
75Se344174.922522870(78)119.78(3) dEC75As5/2+
76Se344275.919213702(17)Stable0+0.0923(7)
77Se344376.919914150(67)Stable1/2−0.0760(7)
77mSe161.9223(10) keV17.36(5) sIT77Se7/2+
78Se344477.91730924(19)Stable0+0.2369 (22)
79Se [n 10] 344578.91849925(24)3.27(28)×105 yβ79Br7/2+
79mSe95.77(3) keV3.900(18) minIT (99.94%)79Se1/2−
β (0.056%)79Br
80Se344679.9165218(10)Observationally Stable [n 11] 0+0.4980(36)
81Se344780.9179930(10)18.45(12) minβ81Br1/2−
81mSe103.00(6) keV57.28(2) minIT (99.95%)81Se7/2+
β (.051%)81Br
82Se [n 12] 344881.91669953(50)8.76(15)×1019 y ββ 82Kr0+0.0882(15)
83Se344982.9191186(33)22.25(4) minβ83Br9/2+
83mSe228.92(7) keV70.1(4) sβ83Br1/2−
84Se345083.9184668(21)3.26(10) minβ84Br0+
85Se345184.9222608(28)32.9(3) sβ85Br(5/2)+
86Se345285.9243117(27)14.3(3) sβ86Br0+
β, n?85Br
87Se345386.9286886(24)5.50(6) sβ (99.50%)87Br(3/2+)
β, n (0.60%)86Br
88Se345487.9314175(36)1.53(6) sβ (99.01%)88Br0+
β, n (0.99%)87Br
89Se345588.9366691(40)430(50) msβ (92.2%)89Br5/2+#
β, n (7.8%)88Br
90Se345689.94010(35)210(80) msβ90Br0+
β, n?89Br
91Se345790.94570(47)270(50) msβ (79%)91Br1/2+#
β, n (21%)90Br
β, 2n?89Br
92Se345891.94984(43)#90# ms [>300 ns]β?92Br0+
β, n?91Br
β, 2n?90Br
92mSe3072(2) keV15.7(7) μsIT92Se(9−)
93Se345992.95614(43)#130# ms [>300 ns]β?93Br1/2+#
β, n?92Br
β, 2n?91Br
93mSe678.2(7) keV420(100) nsIT93Se
94Se346093.96049(54)#50# ms [>300 ns]β?94Br0+
β, n?93Br
β, 2n?92Br
94mSe2430.0(6) keV680(50) nsIT94Se(7−)
95Se346194.96730(54)#70# ms [>400 ns]β?95Br3/2+#
β, n?94Br
β, 2n?93Br
96Se [7] 3462
97Se [7] 3463
This table header & footer:
  1. mSe  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life  nearly stable, half-life longer than age of universe.
  5. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  7. Bold symbol as daughter  Daughter product is stable.
  8. () spin value  Indicates spin with weak assignment arguments.
  9. Believed to decay by β+β+ to 74Ge with a half-life over 2.3×1018 y.
  10. Long-lived fission product
  11. Believed to decay by ββ to 80Kr
  12. Primordial radionuclide

Use of radioisotopes

The isotope selenium-75 has radiopharmaceutical uses. For example, it is used in high-dose-rate endorectal brachytherapy, as an alternative to iridium-192. [8]

In paleobiogeochemistry, the ratio in amount of selenium-82 to selenium-76 (i.e, the value of δ82/76Se) can be used to track down the redox conditions on Earth during the Neoproterozoic era in order to gain a deeper understanding of the rapid oxygenation that trigger the emergence of complex organisms. [9] [10]

Related Research Articles

Protactinium (91Pa) has no stable isotopes. The four naturally occurring isotopes allow a standard atomic weight to be given.

<span class="mw-page-title-main">Isotopes of thallium</span> Nuclides with atomic number of 81 but with different mass numbers

Thallium (81Tl) has 41 isotopes with atomic masses that range from 176 to 216. 203Tl and 205Tl are the only stable isotopes and 204Tl is the most stable radioisotope with a half-life of 3.78 years. 207Tl, with a half-life of 4.77 minutes, has the longest half-life of naturally occurring Tl radioisotopes. All isotopes of thallium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Naturally occurring tungsten (74W) consists of five isotopes. Four are considered stable (182W, 183W, 184W, and 186W) and one is slightly radioactive, 180W, with an extremely long half-life of 1.8 ± 0.2 exayears (1018 years). On average, two alpha decays of 180W occur per gram of natural tungsten per year, so for most practical purposes, 180W can be considered stable. Theoretically, all five can decay into isotopes of element 72 (hafnium) by alpha emission, but only 180W has been observed to do so. The other naturally occurring isotopes have not been observed to decay (they are observationally stable), and lower bounds for their half-lives have been established:

Naturally occurring ytterbium (70Yb) is composed of seven stable isotopes: 168Yb, 170Yb–174Yb, and 176Yb, with 174Yb being the most abundant. 30 radioisotopes have been characterized, with the most stable being 169Yb with a half-life of 32.014 days, 175Yb with a half-life of 4.185 days, and 166Yb with a half-life of 56.7 hours. All of the remaining radioactive isotopes have half-lives that are less than 2 hours, and the majority of these have half-lives that are less than 20 minutes. This element also has 18 meta states, with the most stable being 169mYb.

Naturally occurring gadolinium (64Gd) is composed of 6 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd, 158Gd and 160Gd, and 1 radioisotope, 152Gd, with 158Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of 160Gd has never been observed; only a lower limit on its half-life of more than 1.3×1021 years has been set experimentally.

Naturally occurring neodymium (60Nd) is composed of 5 stable isotopes, 142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2% natural abundance), and 2 long-lived radioisotopes, 144Nd and 150Nd. In all, 33 radioisotopes of neodymium have been characterized up to now, with the most stable being naturally occurring isotopes 144Nd (alpha decay, a half-life (t1/2) of 2.29×1015 years) and 150Nd (double beta decay, t1/2 of 7×1018 years), and for practical purposes they can be considered to be stable as well. All of the remaining radioactive isotopes have half-lives that are less than 12 days, and the majority of these have half-lives that are less than 70 seconds; the most stable artificial isotope is 147Nd with a half-life of 10.98 days. This element also has 13 known meta states with the most stable being 139mNd (t1/2 5.5 hours), 135mNd (t1/2 5.5 minutes) and 133m1Nd (t1/2 ~70 seconds).

Naturally occurring cerium (58Ce) is composed of 4 stable isotopes: 136Ce, 138Ce, 140Ce, and 142Ce, with 140Ce being the most abundant and the only one theoretically stable; 136Ce, 138Ce, and 142Ce are predicted to undergo double beta decay but this process has never been observed. There are 35 radioisotopes that have been characterized, with the most stable being 144Ce, with a half-life of 284.893 days; 139Ce, with a half-life of 137.640 days and 141Ce, with a half-life of 32.501 days. All of the remaining radioactive isotopes have half-lives that are less than 4 days and the majority of these have half-lives that are less than 10 minutes. This element also has 10 meta states.

<span class="mw-page-title-main">Isotopes of lanthanum</span> Nuclides with atomic number of 57 but with different mass numbers

Naturally occurring lanthanum (57La) is composed of one stable (139La) and one radioactive (138La) isotope, with the stable isotope, 139La, being the most abundant (99.91% natural abundance). There are 39 radioisotopes that have been characterized, with the most stable being 138La, with a half-life of 1.02×1011 years; 137La, with a half-life of 60,000 years and 140La, with a half-life of 1.6781 days. The remaining radioactive isotopes have half-lives that are less than a day and the majority of these have half-lives that are less than 1 minute. This element also has 12 nuclear isomers, the longest-lived of which is 132mLa, with a half-life of 24.3 minutes. Lighter isotopes mostly decay to isotopes of barium and heavy ones mostly decay to isotopes of cerium. 138La can decay to both.

Naturally occurring barium (56Ba) is a mix of six stable isotopes and one very long-lived radioactive primordial isotope, barium-130, identified as being unstable by geochemical means (from analysis of the presence of its daughter xenon-130 in rocks) in 2001. This nuclide decays by double electron capture (absorbing two electrons and emitting two neutrinos), with a half-life of (0.5–2.7)×1021 years (about 1011 times the age of the universe).

There are 39 known isotopes and 17 nuclear isomers of tellurium (52Te), with atomic masses that range from 104 to 142. These are listed in the table below.

Natural palladium (46Pd) is composed of six stable isotopes, 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, although 102Pd and 110Pd are theoretically unstable. The most stable radioisotopes are 107Pd with a half-life of 6.5 million years, 103Pd with a half-life of 17 days, and 100Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u (91Pd) to 128.96 u (129Pd). Most of these have half-lives that are less than a half an hour except 101Pd, 109Pd, and 112Pd.

Naturally occurring ruthenium (44Ru) is composed of seven stable isotopes. Additionally, 27 radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru, with a half-life of 373.59 days; 103Ru, with a half-life of 39.26 days and 97Ru, with a half-life of 2.9 days.

Naturally occurring niobium (41Nb) is composed of one stable isotope (93Nb). The most stable radioisotope is 92Nb with a half-life of 34.7 million years. The next longest-lived niobium isotopes are 94Nb and 91Nb with a half-life of 680 years. There is also a meta state of 93Nb at 31 keV whose half-life is 16.13 years. Twenty-seven other radioisotopes have been characterized. Most of these have half-lives that are less than two hours, except 95Nb, 96Nb and 90Nb. The primary decay mode before stable 93Nb is electron capture and the primary mode after is beta emission with some neutron emission occurring in 104–110Nb.

Natural yttrium (39Y) is composed of a single isotope yttrium-89. The most stable radioisotopes are 88Y, which has a half-life of 106.6 days and 91Y with a half-life of 58.51 days. All the other isotopes have half-lives of less than a day, except 87Y, which has a half-life of 79.8 hours, and 90Y, with 64 hours. The dominant decay mode below the stable 89Y is electron capture and the dominant mode after it is beta emission. Thirty-five unstable isotopes have been characterized.

The alkaline earth metal strontium (38Sr) has four stable, naturally occurring isotopes: 84Sr (0.56%), 86Sr (9.86%), 87Sr (7.0%) and 88Sr (82.58%). Its standard atomic weight is 87.62(1).

There are 34 known isotopes of krypton (36Kr) with atomic mass numbers from 69 through 102. Naturally occurring krypton is made of five stable isotopes and one which is slightly radioactive with an extremely long half-life, plus traces of radioisotopes that are produced by cosmic rays in the atmosphere.

Arsenic (33As) has 33 known isotopes and at least 10 isomers. Only one of these isotopes, 75As, is stable; as such, it is considered a monoisotopic element. The longest-lived radioisotope is 73As with a half-life of 80 days.

Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 28 radioisotopes. The most stable radioisotope is 67Cu with a half-life of 61.83 hours. Most of the others have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β+ decay, while isotopes with atomic masses above 65 tend to undergo β decay. 64Cu decays by both β+ and β.

Naturally occurring cobalt (27Co) consists of a single stable isotope, 59Co. Twenty-eight radioisotopes have been characterized; the most stable are 60Co with a half-life of 5.2714 years, 57Co, 56Co, and 58Co. All other isotopes have half-lives of less than 18 hours and most of these have half-lives of less than 1 second. This element also has 11 meta states, all of which have half-lives of less than 15 minutes.

Naturally occurring scandium (21Sc) is composed of one stable isotope, 45Sc. Twenty-five radioisotopes have been characterized, with the most stable being 46Sc with a half-life of 83.8 days, 47Sc with a half-life of 3.35 days, and 48Sc with a half-life of 43.7 hours and 44Sc with a half-life of 3.97 hours. All the remaining isotopes have half-lives that are less than four hours, and the majority of these have half-lives that are less than two minutes, the least stable being proton unbound 39Sc with a half-life shorter than 300 nanoseconds. This element also has 13 meta states with the most stable being 44m2Sc.

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Selenium". CIAAW. 2013.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. The half-life of 79Se Archived September 27, 2011, at the Wayback Machine
  5. Jorg, Gerhard; Buhnemann, Rolf; Hollas, Simon; Kivel, Niko; Kossert, Karsten; Van Winckel, Stefaan; Gostomski, Christoph Lierse v. (2010). "Preparation of radiochemically pure 79Se and highly precise determination of its half-life". Applied Radiation and Isotopes. 68 (12): 2339–51. doi:10.1016/j.apradiso.2010.05.006. PMID   20627600.
  6. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  7. 1 2 Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313.
  8. Shoemaker T; Vuong T; Glickman H; Kaifi S; Famulari G; Enger SA (2019). "Dosimetric Considerations for Ytterbium-169, Selenium-75, and Iridium-192 Radioisotopes in High-Dose-Rate Endorectal Brachytherapy". Int J Radiat Oncol Biol Phys. 105 (4): 875–883. doi:10.1016/j.ijrobp.2019.07.003. PMID   31330175. S2CID   198170324.
  9. Pogge von Strandmann, Philip A. E.; Stüeken, Eva E.; Elliott, Tim; Poulton, Simon W.; Dehler, Carol M.; Canfield, Don E.; Catling, David C. (2015-12-18). "Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere". Nature Communications. 6 (1): 10157. doi: 10.1038/ncomms10157 . ISSN   2041-1723. PMC   4703861 . PMID   26679529.
  10. Stüeken, Eva E. "Selenium isotopes as a biogeochemical proxy in deep time" (PDF). core.ac.uk.