Isotopes of actinium

Last updated

Isotopes of actinium  (89Ac)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
225Ac trace 9.919 d α 221Fr
226Ac synth 29.37 h β 226Th
ε 226Ra
α 222Fr
227Actrace21.772 yβ 227Th
α 223Fr
228Actrace6.15 hβ 228Th

Actinium (89Ac) has no stable isotopes and no characteristic terrestrial isotopic composition, thus a standard atomic weight cannot be given. There are 34 known isotopes, from 203Ac to 236Ac, and 7 isomers. Three isotopes are found in nature, 225Ac, 227Ac and 228Ac, as intermediate decay products of, respectively, 237Np, 235U, and 232Th. 228Ac and 225Ac are extremely rare, so almost all natural actinium is 227Ac.

Contents

The most stable isotopes are 227Ac with a half-life of 21.772 years, 225Ac with a half-life of 10.0 days, and 226Ac with a half-life of 29.37 hours. All other isotopes have half-lives under 10 hours, and most under a minute. The shortest-lived known isotope is 217Ac with a half-life of 69 ns.

Purified 227Ac comes into equilibrium with its decay products (227Th and 223Fr) after 185 days. [2]

List of isotopes


Nuclide
[n 1]
Historic
name
Z N Isotopic mass (Da) [3]
[n 2] [n 3]
Half-life [1]
Decay
mode
[1]
[n 4]
Daughter
isotope

[n 5]
Spin and
parity [1]
[n 6] [n 7]
Isotopic
abundance
Excitation energy [n 7]
203Ac [4] 8911456+269
−26
 μs
α 199Fr(1/2+)
204Ac [5] 891157.4+2.2
−1.4
 ms
α200Fr
205Ac89116205.01514(6)7.7+2.7
−1.6
 ms
[5]
α201Fr9/2−
206Ac89117206.01448(7)25(7) msα202Fr(3+)
206mAc200(70) keV41(16) msα202mFr(10−)
207Ac89118207.01197(6)31(8) msα203Fr9/2−#
208Ac89119208.01155(7)97(15) msα204Fr(3+)
208mAc500(60) keV28(7) msα204Fr(10−)
IT  ?208Ac
209Ac89120209.00950(6)94(10) msα205Fr(9/2−)
210Ac89121210.00941(7)350(40) msα206Fr7+#
211Ac89122211.00767(6)213(25) msα207Fr9/2−
212Ac89123212.007836(23)895(28) msα208Fr7+
213Ac89124213.006593(13)738(16) msα209Fr9/2−
214Ac89125214.006906(15)8.2(2) sα (93%)210Fr5+
β+ (7%)214Ra
215Ac89126215.006474(13)171(10) msα (99.91%)211Fr9/2−
β+ (0.09%)215Ra
215m1Ac1796.0(9) keV185(30) nsIT215Ac(21/2−)
215m2Ac2488(50)# keV335(10) nsIT215Ac(29/2+)
216Ac89127216.008749(10)440(16) μsα212Fr(1−)
216m1Ac38(5) keV441(7) μsα212Fr(9−)
216m2Ac422(100)# keV~300 nsIT216Ac
217Ac89128217.009342(12)69(4) nsα213Fr9/2−
217mAc2012(20) keV740(40) ns29/2+
218Ac89129218.01165(6)1.00(4) μsα214Fr(1−)
218mAc607(86)# keV103(11) nsIT218Ac(11+)
219Ac89130219.01242(6)9.4(10) μsα215Fr9/2−
220Ac89131220.014755(7)26.36(19) msα216Fr(3−)
221Ac89132221.01560(6)52(2) msα217Fr9/2−#
222Ac89133222.017844(5)5.0(5) sα218Fr1−
β+ (<2%)222Ra
222mAc78(21) keV1.05(5) minα (98.6%)218Fr5+#
β+ (1.4%)222Ra
IT?222Ac
223Ac89134223.019136(7)2.10(5) minα219Fr(5/2−)
EC  ?223Ra
CD (3.2×10−9%) [6] 209Bi
14C
224Ac89135224.021722(4)2.78(16) hβ+ (90.5%)224Ra(0−)
α (9.5%)220Fr
β ?224Th
225Ac [n 8] 89136225.023229(5)9.9190(21) dα221Fr3/2−Trace [n 9]
CD (5.3×10−10%)211Bi
14C
226Ac89137226.026097(3)29.37(12) hβ (83%)226Th(1−)
EC (17%)226Ra
α (0.006%)222Fr
227AcActinium [n 10] 89138227.0277506(21)21.772(3) yβ (98.62%)227Th3/2−Trace [n 11]
α (1.38%)223Fr
228AcMesothorium 289139228.0310197(22)6.15(2) hβ228Th3+Trace [n 12]
229Ac89140229.032947(13)62.7(5) minβ229Th3/2+
230Ac89141230.036327(17)122(3) sβ230Th(1+)
231Ac89142231.038393(14)7.5(1) minβ231Th1/2+
232Ac89143232.042034(14)1.98(8) minβ232Th(1+)
233Ac89144233.044346(14)143(10) sβ233Th(1/2+)
234Ac89145234.048139(15)45(2) sβ234Th
235Ac89146235.050840(15)62(4) sβ235Th1/2+#
236Ac [7] 89147236.05499(4)72+345
−33
 s
β236Th
This table header & footer:
  1. mAc  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    EC: Electron capture
    CD: Cluster decay
    IT: Isomeric transition
  5. Bold italics symbol as daughter  Daughter product is nearly stable.
  6. () spin value  Indicates spin with weak assignment arguments.
  7. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  8. Has medical uses
  9. Intermediate decay product of 237Np
  10. Source of element's name
  11. Intermediate decay product of 235U
  12. Intermediate decay product of 232Th

Actinides vs fission products

Actinides [8] by decay chain Half-life
range (a)
Fission products of 235U by yield [9]
4n 4n + 1 4n + 2 4n + 3 4.5–7%0.04–1.25%<0.001%
228 Ra 4–6 a 155 Euþ
248 Bk [10] > 9 a
244 Cmƒ 241 Puƒ 250 Cf 227 Ac 10–29 a 90 Sr 85 Kr 113m Cdþ
232 Uƒ 238 Puƒ 243 Cmƒ 29–97 a 137 Cs 151 Smþ 121m Sn
249 Cfƒ 242m Amƒ141–351 a

No fission products have a half-life
in the range of 100 a–210 ka ...

241 Amƒ 251 Cfƒ [11] 430–900 a
226 Ra 247 Bk1.3–1.6 ka
240 Pu 229 Th 246 Cmƒ 243 Amƒ4.7–7.4 ka
245 Cmƒ 250 Cm8.3–8.5 ka
239 Puƒ24.1 ka
230 Th 231 Pa32–76 ka
236 Npƒ 233 Uƒ 234 U 150–250 ka 99 Tc 126 Sn
248 Cm 242 Pu 327–375 ka 79 Se
1.33 Ma 135 Cs
237 Npƒ 1.61–6.5 Ma 93 Zr 107 Pd
236 U 247 Cmƒ 15–24 Ma 129 I
244 Pu80 Ma

... nor beyond 15.7 Ma [12]

232 Th 238 U 235 Uƒ№0.7–14.1 Ga

Notable isotopes

Actinium-225

Actinium-225 is a highly radioactive isotope with 136 neutrons. It is an alpha emitter and has a half-life of 9.919 days. As of 2024, it is being researched as a possible alpha source in targeted alpha therapy. [13] [14] [15] Actinium-225 undergoes a series of three alpha decays – via the short-lived francium-221 and astatine-217 – to 213Bi, which itself is used as an alpha source. [16] Another benefit is that the decay chain of 225Ac ends in the nuclide 209Bi, [note 1] which has a considerably shorter biological half-life than lead. [17] [18] However, a major factor limiting its usage is the difficulty in producing the short-lived isotope, as it is most commonly isolated from aging parent nuclides (such as 233U); it may also be produced in cyclotrons, linear accelerators, or fast breeder reactors. [19]

Actinium-226

Actinium-226 is an isotope of actinium with a half-life of 29.37 hours. It mainly (83%) undergos beta decay, sometimes (17%) undergo electron capture, and rarely (0.006%) undergo alpha decay. [1] There are researches on 226Ac to use it in SPECT. [20] [21]

Actinium-227

Actinium-227 is the most stable isotope of actinium, with a half-life of 21.772 years. It mainly (98.62%) undergoes beta decay, but sometimes (1.38%) it will undergo alpha decay instead. [1] 227Ac is a member of the actinium series. It is found only in traces in uranium ores – one tonne of uranium in ore contains about 0.2 milligrams of 227Ac. [22] [23] 227Ac is prepared, in milligram amounts, by the neutron irradiation of 226Ra in a nuclear reactor. [23] [24]

227Ac is highly radioactive and was therefore studied for use as an active element of radioisotope thermoelectric generators, for example in spacecraft. The oxide of 227Ac pressed with beryllium is also an efficient neutron source with the activity exceeding that of the standard americium-beryllium and radium-beryllium pairs. [25] In all those applications, 227Ac (a beta source) is merely a progenitor which generates alpha-emitting isotopes upon its decay. Beryllium captures alpha particles and emits neutrons owing to its large cross-section for the (α,n) nuclear reaction:

The 227AcBe neutron sources can be applied in a neutron probe  – a standard device for measuring the quantity of water present in soil, as well as moisture/density for quality control in highway construction. [26] [27] Such probes are also used in well logging applications, in neutron radiography, tomography and other radiochemical investigations. [28]

The medium half-life of 227Ac makes it a very convenient radioactive isotope in modeling the slow vertical mixing of oceanic waters. The associated processes cannot be studied with the required accuracy by direct measurements of current velocities (of the order 50 meters per year). However, evaluation of the concentration depth-profiles for different isotopes allows estimating the mixing rates. The physics behind this method is as follows: oceanic waters contain homogeneously dispersed 235U. Its decay product, 231Pa, gradually precipitates to the bottom, so that its concentration first increases with depth and then stays nearly constant. 231Pa decays to 227Ac; however, the concentration of the latter isotope does not follow the 231Pa depth profile, but instead increases toward the sea bottom. This occurs because of the mixing processes which raise some additional 227Ac from the sea bottom. Thus analysis of both 231Pa and 227Ac depth profiles allows researchers to model the mixing behavior. [29] [30]

See also

Notes

  1. Bismuth-209 decays into thallium-205 with a half-life exceeding 1019 years, but this half-life is so long that for practical purposes bismuth-209 can be considered stable.

References

  1. 1 2 3 4 5 6 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. G. D. Considine, ed. (2005). "Chemical Elements". Van Nostrand's Encyclopedia of Chemistry. Wiley-Interscience. p. 332. ISBN   978-0-471-61525-5.
  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  4. Wang, J. G.; Gan, Z. G.; Zhang, Z. Y.; et al. (1 March 2024). "α-decay properties of new neutron-deficient isotope 203Ac". Physics Letters B. 850: 138503. doi: 10.1016/j.physletb.2024.138503 . ISSN   0370-2693.
  5. 1 2 Huang, M. H.; Gan, Z. G.; Zhang, Z. Y.; et al. (10 November 2022). "α decay of the new isotope 204Ac". Physics Letters B. 834: 137484. Bibcode:2022PhLB..83437484H. doi: 10.1016/j.physletb.2022.137484 . ISSN   0370-2693. S2CID   252730841.
  6. Guglielmetti, A.; Faccio, D.; Bonetti, R.; Shishkin, S. V.; Tretyakova, S. P.; Dmitriev, S. V.; Ogloblin, A. A.; Pik-Pichak, G. A.; van der Meulen, N. P.; Steyn, G. F.; van der Walt, T. N.; Vermeulen, C.; McGee, D. (2008). "Carbon radioactivity of223Ac and a search for nitrogen emission". Journal of Physics: Conference Series. 111 (1): 012050. Bibcode:2008JPhCS.111a2050G. doi: 10.1088/1742-6596/111/1/012050 .
  7. Chen, L.; et al. (2010). "Discovery and investigation of heavy neutron-rich isotopes with time-resolved Schottky spectrometry in the element range from thallium to actinium" (PDF). Physics Letters B. 691 (5): 234–237. Bibcode:2010PhLB..691..234C. doi:10.1016/j.physletb.2010.05.078.
  8. Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here.
  9. Specifically from thermal neutron fission of uranium-235, e.g. in a typical nuclear reactor.
  10. Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4.
    "The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk248 with a half-life greater than 9 [years]. No growth of Cf248 was detected, and a lower limit for the β half-life can be set at about 104 [years]. No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 [years]."
  11. This is the heaviest nuclide with a half-life of at least four years before the "sea of instability".
  12. Excluding those "classically stable" nuclides with half-lives significantly in excess of 232Th; e.g., while 113mCd has a half-life of only fourteen years, that of 113Cd is eight quadrillion years.
  13. A. Scheinberg, David; R. McDevitt, Michael (1 October 2011). "Actinium-225 in Targeted Alpha-Particle Therapeutic Applications". Current Radiopharmaceuticals. 4 (4): 306–320. doi:10.2174/1874471011104040306. PMC   5565267 . PMID   22202153.
  14. Reissig, Falco; Bauer, David; Zarschler, Kristof; Novy, Zbynek; Bendova, Katerina; Ludik, Marie-Charlotte; Kopka, Klaus; Pietzsch, Hans-Jürgen; Petrik, Milos; Mamat, Constantin (20 April 2021). "Towards Targeted Alpha Therapy with Actinium-225: Chelators for Mild Condition Radiolabeling and Targeting PSMA—A Proof of Concept Study". Cancers. 13 (8): 1974. doi: 10.3390/cancers13081974 . PMC   8073976 . PMID   33923965.
  15. Bidkar, Anil P.; Zerefa, Luann; Yadav, Surekha; VanBrocklin, Henry F.; Flavell, Robert R. (2024). "Actinium-225 targeted alpha particle therapy for prostate cancer". Theranostics. 14 (7): 2969–2992. doi:10.7150/thno.96403. PMC   11103494 .
  16. Ahenkorah, Stephen; Cassells, Irwin; Deroose, Christophe M.; Cardinaels, Thomas; Burgoyne, Andrew R.; Bormans, Guy; Ooms, Maarten; Cleeren, Frederik (21 April 2021). "Bismuth-213 for Targeted Radionuclide Therapy: From Atom to Bedside". Pharmaceutics. 13 (5): 599. doi: 10.3390/pharmaceutics13050599 . PMC   8143329 .
  17. Handbook on the toxicology of metals. Volume 2: Specific metals (Fourth ed.). Amsterdam Boston Heidelberg London: Elsevier, Aademic Press. 2015. p. 655. ISBN   978-0-12-398293-3.
  18. Wani, Ab Latif; Ara, Anjum; Usmani, Jawed Ahmad (1 June 2015). "Lead toxicity: a review". Interdisciplinary Toxicology. 8 (2): 55–64. doi:10.1515/intox-2015-0009. PMC   4961898 .
  19. Dhiman, Deeksha; Vatsa, Rakhee; Sood, Ashwani (September 2022). "Challenges and opportunities in developing Actinium-225 radiopharmaceuticals". Nuclear Medicine Communications. 43 (9): 970–977. doi:10.1097/MNM.0000000000001594. PMID   35950353.
  20. Koniar, Helena; Rodríguez-Rodríguez, Cristina; Radchenko, Valery; Yang, Hua; Kunz, Peter; Rahmim, Arman; Uribe, Carlos; Schaffer, Paul (2022-09-12). "SPECT imaging of 226Ac as a theranostic isotope for 225Ac radiopharmaceutical development". Physics in Medicine and Biology. 67 (18). doi:10.1088/1361-6560/ac8b5f. ISSN   1361-6560. PMID   35985341.
  21. Koniar, Helena; Wharton, Luke; Ingham, Aidan; Rodríguez-Rodríguez, Cristina; Kunz, Peter; Radchenko, Valery; Yang, Hua; Rahmim, Arman; Uribe, Carlos; Schaffer, Paul (2024-07-16). "In vivoquantitative SPECT imaging of actinium-226: feasibility and proof-of-concept". Physics in Medicine and Biology. 69 (15). doi: 10.1088/1361-6560/ad5c37 . ISSN   1361-6560. PMID   38925140.
  22. Hagemann, French (1950). "The Isolation of Actinium". Journal of the American Chemical Society. 72 (2): 768–771. doi:10.1021/ja01158a033.
  23. 1 2 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 946. doi:10.1016/C2009-0-30414-6. ISBN   978-0-08-037941-8.
  24. Emeleus, H. J. (1987). Advances in inorganic chemistry and radiochemistry. Academic Press. pp. 16–. ISBN   978-0-12-023631-2.
  25. Russell, Alan M. and Lee, Kok Loong (2005) Structure-property relations in nonferrous metals. Wiley. ISBN   0-471-64952-X, pp. 470–471
  26. Majumdar, D. K. (2004) Irrigation Water Management: Principles and Practice. ISBN   81-203-1729-7 p. 108
  27. Chandrasekharan, H. and Gupta, Navindu (2006) Fundamentals of Nuclear Science – Application in Agriculture. ISBN   81-7211-200-9 pp. 202 ff
  28. Dixon, W. R.; Bielesch, Alice; Geiger, K. W. (1957). "Neutron Spectrum of an Actinium–Beryllium Source". Can. J. Phys. 35 (6): 699–702. Bibcode:1957CaJPh..35..699D. doi:10.1139/p57-075.
  29. Nozaki, Yoshiyuki (1984). "Excess 227Ac in deep ocean water". Nature. 310 (5977): 486–488. Bibcode:1984Natur.310..486N. doi:10.1038/310486a0. S2CID   4344946.
  30. Geibert, W.; Rutgers Van Der Loeff, M. M.; Hanfland, C.; Dauelsberg, H.-J. (2002). "Actinium-227 as a deep-sea tracer: sources, distribution and applications" . Earth and Planetary Science Letters. 198 (1–2): 147–165. Bibcode:2002E&PSL.198..147G. doi:10.1016/S0012-821X(02)00512-5.