| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Gd) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring gadolinium (64Gd) is composed of 6 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd, 158Gd and 160Gd, and 1 long-lived radioisotope, 152Gd, with 158Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of 160Gd has never been observed.
Thirty-three radioisotopes have been characterized, with the three most stable being alpha emitters: 152Gd (naturally occurring) with a half-life of 1.08×1014 years, 150Gd with a half-life of 1.79×106 years, and 148Gd (theoretically not beta-stable) with a half-life of 86.9 years. All of the remaining radioactive isotopes have half-lives less than a year, the majority of these having half-lives less than two minutes. There are also 10 metastable isomers, with the most stable being 143mGd (t1/2 = 110 seconds), 145mGd (t1/2 = 85 seconds) and 141mGd (t1/2 = 24.5 seconds).
The isotopes with atomic masses lower than the most abundant stable isotope, 158Gd, primarily decay by electron capture to isotopes of europium. At higher atomic masses, the primary decay mode is beta decay to isotopes of terbium.
Nuclide [n 1] | Z | N | Isotopic mass (Da) [5] [n 2] [n 3] | Half-life [1] [n 4] [n 5] | Decay mode [1] [n 6] | Daughter isotope [n 7] [n 8] | Spin and parity [1] [n 9] [n 5] | Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy [n 5] | Normal proportion [1] | Range of variation | |||||||||||||||||
134Gd | 64 | 70 | |||||||||||||||||
135Gd | 64 | 71 | 134.95250(43)# | 1.1(2) s | β+ (98%) | 135Eu | (5/2+) | ||||||||||||
β+, p (98%) | 134Sm | ||||||||||||||||||
136Gd | 64 | 72 | 135.94730(32)# | 1# s [>200 ns] | β+? | 136Eu | 0+ | ||||||||||||
β+, p? | 135Sm | ||||||||||||||||||
137Gd | 64 | 73 | 136.94502(32)# | 2.2(2) s | β+ | 137Eu | (7/2)+# | ||||||||||||
β+, p? | 136Sm | ||||||||||||||||||
138Gd | 64 | 74 | 137.94025(22)# | 4.7(9) s | β+ | 138Eu | 0+ | ||||||||||||
138mGd | 2232.6(11) keV | 6.2(0.2) μs | IT | 138Gd | (8−) | ||||||||||||||
139Gd | 64 | 75 | 138.93813(21)# | 5.7(3) s | β+ | 139Eu | 9/2−# | ||||||||||||
β+, p? | 138Sm | ||||||||||||||||||
139mGd [n 10] | 250(150)# keV | 4.8(9) s | β+ | 139Eu | 1/2+# | ||||||||||||||
β+, p? | 138Sm | ||||||||||||||||||
140Gd | 64 | 76 | 139.933674(30) | 15.8(4) s | β+ (67(8)%) | 140Eu | 0+ | ||||||||||||
EC (33(8)%) | |||||||||||||||||||
141Gd | 64 | 77 | 140.932126(21) | 14(4) s | β+ (99.97%) | 141Eu | (1/2+) | ||||||||||||
β+, p (0.03%) | 140Sm | ||||||||||||||||||
141mGd | 377.76(9) keV | 24.5(5) s | β+ (89%) | 141Eu | (11/2−) | ||||||||||||||
IT (11%) | 141Gd | ||||||||||||||||||
142Gd | 64 | 78 | 141.928116(30) | 70.2(6) s | EC (52(5)%) | 142Eu | 0+ | ||||||||||||
β+ (48(5)%) | |||||||||||||||||||
143Gd | 64 | 79 | 142.92675(22) | 39(2) s | β+ | 143Eu | 1/2+ | ||||||||||||
β+, p? | 142Sm | ||||||||||||||||||
β+, α? | 139Pm | ||||||||||||||||||
143mGd | 152.6(5) keV | 110.0(14) s | β+ | 143Eu | 11/2− | ||||||||||||||
β+, p? | 142Sm | ||||||||||||||||||
β+, α? | 139Pm | ||||||||||||||||||
144Gd | 64 | 80 | 143.922963(30) | 4.47(6) min | β+ | 144Eu | 0+ | ||||||||||||
144mGd | 3433.1(5) keV | 145(30) ns | IT | 144Gd | (10+) | ||||||||||||||
145Gd | 64 | 81 | 144.921710(21) | 23.0(4) min | β+ | 145Eu | 1/2+ | ||||||||||||
145mGd | 749.1(2) keV | 85(3) s | IT (94.3%) | 145Gd | 11/2− | ||||||||||||||
β+ (5.7%) | 145Eu | ||||||||||||||||||
146Gd | 64 | 82 | 145.9183185(44) | 48.27(9) d | EC | 146Eu | 0+ | ||||||||||||
147Gd | 64 | 83 | 146.9191010(20) | 38.06(12) h | β+ | 147Eu | 7/2− | ||||||||||||
147mGd | 8587.8(5) keV | 510(20) ns | IT | 147Gd | 49/2+ | ||||||||||||||
148Gd | 64 | 84 | 147.9181214(16) | 86.9(39) y [2] | α [n 11] | 144Sm | 0+ | ||||||||||||
149Gd | 64 | 85 | 148.9193477(36) | 9.28(10) d | β+ | 149Eu | 7/2− | ||||||||||||
α (4.3×10−4%) | 145Sm | ||||||||||||||||||
150Gd | 64 | 86 | 149.9186639(65) | 1.79(8)×106 y | α [n 12] | 146Sm | 0+ | ||||||||||||
151Gd | 64 | 87 | 150.9203549(32) | 123.9(10) d | EC | 151Eu | 7/2− | ||||||||||||
α (1.1×10−6%) | 147Sm | ||||||||||||||||||
152Gd [n 13] | 64 | 88 | 151.9197984(11) | 1.08(8)×1014 y | α [n 14] | 148Sm | 0+ | 0.0020(1) | |||||||||||
153Gd | 64 | 89 | 152.9217569(11) | 240.6(7) d | EC | 153Eu | 3/2− | ||||||||||||
153m1Gd | 95.1737(8) keV | 3.5(4) μs | IT | 153Gd | 9/2+ | ||||||||||||||
153m2Gd | 171.188(4) keV | 76.0(14) μs | IT | 153Gd | (11/2−) | ||||||||||||||
154Gd [n 15] | 64 | 90 | 153.9208730(11) | Observationally Stable [n 16] | 0+ | 0.0218(2) | |||||||||||||
155Gd [n 15] | 64 | 91 | 154.9226294(11) | Observationally Stable [n 17] | 3/2− | 0.1480(9) | |||||||||||||
155mGd | 121.10(19) keV | 31.97(27) ms | IT | 155Gd | 11/2− | ||||||||||||||
156Gd [n 15] | 64 | 92 | 155.9221301(11) | Stable | 0+ | 0.2047(3) | |||||||||||||
156mGd | 2137.60(5) keV | 1.3(1) μs | IT | 156Gd | 7- | ||||||||||||||
157Gd [n 15] | 64 | 93 | 156.9239674(10) | Stable | 3/2− | 0.1565(4) | |||||||||||||
157m1Gd | 63.916(5) keV | 460(40) ns | IT | 157Gd | 5/2+ | ||||||||||||||
157m2Gd | 426.539(23) keV | 18.5(23) μs | IT | 157Gd | 11/2− | ||||||||||||||
158Gd [n 15] | 64 | 94 | 157.9241112(10) | Stable | 0+ | 0.2484(8) | |||||||||||||
159Gd [n 15] | 64 | 95 | 158.9263958(11) | 18.479(4) h | β− | 159Tb | 3/2− | ||||||||||||
160Gd [n 15] | 64 | 96 | 159.9270612(12) | Observationally Stable [n 18] | 0+ | 0.2186(3) | |||||||||||||
161Gd | 64 | 97 | 160.9296763(16) | 3.646(3) min | β− | 161Tb | 5/2− | ||||||||||||
162Gd | 64 | 98 | 161.9309918(43) | 8.4(2) min | β− | 162Tb | 0+ | ||||||||||||
163Gd | 64 | 99 | 162.93409664(86) | 68(3) s | β− | 163Tb | 7/2+ | ||||||||||||
163mGd | 138.22(20) keV | 23.5(10) s | IT? | 163Gd | 1/2− | ||||||||||||||
β− | 163Tb | ||||||||||||||||||
164Gd | 64 | 100 | 163.9359162(11) | 45(3) s | β− | 164Tb | 0+ | ||||||||||||
164mGd | 1095.8(4) keV | 589(18) ns | IT | 164Gd | (4−) | ||||||||||||||
165Gd | 64 | 101 | 164.9393171(14) | 11.6(10) s | β− | 165Tb | 1/2−# | ||||||||||||
166Gd | 64 | 102 | 165.9416304(17) | 5.1(8) s | β− | 166Tb | 0+ | ||||||||||||
166mGd | 1601.5(11) keV | 950(60) ns | IT | 166Gd | (6−) | ||||||||||||||
167Gd | 64 | 103 | 166.9454900(56) | 4.2(3) s | β− | 167Tb | 5/2−# | ||||||||||||
168Gd | 64 | 104 | 167.94831(32)# | 3.03(16) s | β− | 168Tb | 0+ | ||||||||||||
169Gd | 64 | 105 | 168.95288(43)# | 750(210) ms | β− | 169Tb | 7/2−# | ||||||||||||
β−, n? (<0.7%) [6] | 168Tb | ||||||||||||||||||
170Gd | 64 | 106 | 169.95615(54)# | 675+94 −75 ms [6] | β− | 170Tb | 0+ | ||||||||||||
β−, n? (<3%) [6] | 169Tb | ||||||||||||||||||
171Gd | 64 | 107 | 170.96113(54)# | 392+145 −136 ms [6] | β− | 171Tb | 9/2+# | ||||||||||||
β−, n? (<10%) [6] | 170Tb | ||||||||||||||||||
172Gd | 64 | 108 | 171.96461(32)# | 163+113 −99 ms [6] | β− | 172Tb | 0+# | ||||||||||||
β−, n? (<50%) [6] | 171Tb | ||||||||||||||||||
This table header & footer: |
EC: | Electron capture |
IT: | Isomeric transition |
With a half-life of 86.9±3.9 year via alpha decay alone, [2] gadolinium-148 would be ideal for radioisotope thermoelectric generators. However, gadolinium-148 cannot be economically synthesized in sufficient quantities to power a RTG. [7]
Gadolinium-153 has a half-life of 240.4±10 d and emits gamma radiation with strong peaks at 41 keV and 102 keV. It is used as a gamma ray source for X-ray absorptiometry and fluorescence, for bone density gauges for osteoporosis screening, and for radiometric profiling in the Lixiscope portable x-ray imaging system, also known as the Lixi Profiler. In nuclear medicine, it serves to calibrate the equipment needed like single-photon emission computed tomography systems (SPECT) to make x-rays. It ensures that the machines work correctly to produce images of radioisotope distribution inside the patient. This isotope is produced in a nuclear reactor from europium or enriched gadolinium. [8] It can also detect the loss of calcium in the hip and back bones, allowing the ability to diagnose osteoporosis. [9]
Daughter products other than gadolinium