Isotopes of silicon

Last updated

Isotopes of silicon  (14Si)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
28Si92.2% stable
29Si4.7%stable
30Si3.1%stable
31Si trace 2.62 h β 31P
32Sitrace153 yβ 32P
Standard atomic weight Ar°(Si)

Silicon (14Si) has 25 known isotopes, with mass numbers ranging from 22 to 46. 28Si (the most abundant isotope, at 92.23%), 29Si (4.67%), and 30Si (3.1%) are stable. The longest-lived radioisotope is 32Si, which is produced by cosmic ray spallation of argon. Its half-life has been determined to be approximately 150 years (with decay energy 0.21 MeV), and it decays by beta emission to 32 P (which has a 14.27-day half-life) [1] and then to 32 S. After 32Si, 31Si has the second longest half-life at 157.3 minutes. All others have half-lives under 7 seconds.

Contents

A chart showing the relative abundances of the naturally occurring isotopes of silicon. Isotopes of Silicon.png
A chart showing the relative abundances of the naturally occurring isotopes of silicon.

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da) [4]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity [1]
[n 7] [n 4]
Natural abundance (mole fraction)
Excitation energyNormal proportion [1] Range of variation
22Si14822.03611(54)#28.7(11) ms β+, p (62%)21Mg0+
β+ (37%)22Al
β+, 2p (0.7%)20Na
23Si14923.02571(54)#42.3(4) msβ+, p (88%)22Mg3/2+#
β+ (8%)23Al
β+, 2p (3.6%)21Na
24Si141024.011535(21)143.2 (21) msβ+ (65.5%)24Al0+
β+, p (34.5%)23Mg
25Si141125.004109(11)220.6(10) msβ+ (65%)25Al5/2+
β+, p (35%)24Mg
26Si141225.99233382(12)2.2453(7) sβ+26Al0+
27Si141326.98670469(12)4.117(14) sβ+27Al5/2+
28Si141427.97692653442(55)Stable0+0.92223(19)0.92205–0.92241
29Si141528.97649466434(60)Stable1/2+0.04685(8)0.04678–0.04692
30Si141629.973770137(23)Stable0+0.03092(11)0.03082–0.03102
31Si141730.975363196(46)157.16(20) minβ31P3/2+
32Si141831.97415154(32)157(7) yβ32P0+ trace cosmogenic
33Si141932.97797696(75)6.18(18) sβ33P3/2+
34Si142033.97853805(86)2.77(20) sβ34P0+
34mSi4256.1(4) keV<210 nsIT34Si(3−)
35Si142134.984550(38)780(120) msβ35P7/2−#
β, n?34P
36Si142235.986649(77)503(2) msβ (88%)36P0+
β, n (12%)35P
37Si142336.99295(12)141.0(35) msβ (83%)37P(5/2−)
β, n (17%)36P
β, 2n?35P
38Si142437.99552(11)63(8) msβ (75%)38P0+
β, n (25%)37P
39Si142539.00249(15)41.2(41) msβ (67%)39P(5/2−)
β, n (33%)38P
β, 2n?37P
40Si142640.00608(13)31.2(26) msβ (62%)40P0+
β, n (38%)39P
β, 2n?38P
41Si142741.01417(32)#20.0(25) msβ, n (>55%)40P7/2−#
β (<45%)41P
β, 2n?39P
42Si142842.01808(32)#15.5(4 (stat), 16 (sys)) ms [5] β (51%)42P0+
β, n (48%)41P
β, 2n (1%)40P
43Si142943.02612(43)#13(4 (stat), 2 (sys)) ms [5] β, n (52%)42P3/2−#
β (27%)43P
β, 2n (21%)41P
44Si143044.03147(54)#4# ms [>360 ns]β?44P0+
β, n?43P
β, 2n?42P
45Si [6] 143145.03982(64)#
46Si [6] 1432
This table header & footer:
  1. mSi  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.

Silicon-28

Silicon-28, the most abundant isotope of silicon, is of particular interest in the construction of quantum computers when highly enriched, as the presence of 29Si in a sample of silicon contributes to quantum decoherence. [7] Extremely pure (>99.9998%) samples of 28Si can be produced through selective ionization and deposition of 28Si from silane gas. [8] Due to the extremely high purity that can be obtained in this manner, the Avogadro project sought to develop a new definition of the kilogram by making a 93.75 mm (3.691 in) sphere of the isotope and determining the exact number of atoms in the sample. [9] [10]

Silicon-28 is produced in stars during the alpha process and the oxygen-burning process, and drives the silicon-burning process in massive stars shortly before they go supernova. [11] [12]

Silicon-29

Silicon-29 is of note as the only stable silicon isotope with a nuclear spin (I = 1/2). [13] As such, it can be employed in nuclear magnetic resonance and hyperfine transition studies, for example to study the properties of the so-called A-center defect in pure silicon. [14]

Silicon-34

Silicon-34 is a radioactive isotope with a half-life of 2.8 seconds. [1] In addition to the usual N = 20 closed shell, the nucleus also shows a strong Z = 14 shell closure, making it behave like a doubly magic spherical nucleus, except that it is also located two protons above an island of inversion. [15] Silicon-34 has an unusual "bubble" structure where the proton distribution is less dense at the center than near the surface, as the 2s1/2 proton orbital is almost unoccupied in the ground state, unlike in 36S where it is almost full. [16] [17] Silicon-34 is one of the known cluster decay emission particles; it is produced in the decay of 242Cm with a branching ratio of approximately 1×10−16. [18]

Related Research Articles

<span class="mw-page-title-main">Beta decay</span> Type of radioactive decay

In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle, transforming into an isobar of that nuclide. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino; or, conversely a proton is converted into a neutron by the emission of a positron with a neutrino in what is called positron emission. Neither the beta particle nor its associated (anti-)neutrino exist within the nucleus prior to beta decay, but are created in the decay process. By this process, unstable atoms obtain a more stable ratio of protons to neutrons. The probability of a nuclide decaying due to beta and other forms of decay is determined by its nuclear binding energy. The binding energies of all existing nuclides form what is called the nuclear band or valley of stability. For either electron or positron emission to be energetically possible, the energy release or Q value must be positive.

<span class="mw-page-title-main">Neutron</span> Subatomic particle with no charge

The neutron is a subatomic particle, symbol
n
or
n0
, which has no electric charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, they are both referred to as nucleons. Nucleons have a mass of approximately one atomic mass unit, or dalton. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks.

<span class="mw-page-title-main">Proton</span> Subatomic particle with positive charge

A proton is a stable subatomic particle, symbol
p
, H+, or 1H+ with a positive electric charge of +1 e (elementary charge). Its mass is slightly less than the mass of a neutron and approximately 1836 times the mass of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with a mass of approximately one atomic mass unit, are jointly referred to as nucleons (particles present in atomic nuclei).

Livermorium is a synthetic chemical element; it has symbol Lv and atomic number 116. It is an extremely radioactive element that has only been created in a laboratory setting and has not been observed in nature. The element is named after the Lawrence Livermore National Laboratory in the United States, which collaborated with the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, to discover livermorium during experiments conducted between 2000 and 2006. The name of the laboratory refers to the city of Livermore, California, where it is located, which in turn was named after the rancher and landowner Robert Livermore. The name was adopted by IUPAC on May 30, 2012. Five isotopes of livermorium are known, with mass numbers of 288 and 290–293 inclusive; the longest-lived among them is livermorium-293 with a half-life of about 80 milliseconds. A sixth possible isotope with mass number 294 has been reported but not yet confirmed.

Nihonium is a synthetic chemical element; it has the symbol Nh and atomic number 113. It is extremely radioactive: its most stable known isotope, nihonium-286, has a half-life of about 10 seconds. In the periodic table, nihonium is a transactinide element in the p-block. It is a member of period 7 and group 13.

<span class="mw-page-title-main">Magic number (physics)</span> Number of protons or neutrons that make a nucleus particularly stable

In nuclear physics, a magic number is a number of nucleons such that they are arranged into complete shells within the atomic nucleus. As a result, atomic nuclei with a "magic" number of protons or neutrons are much more stable than other nuclei. The seven most widely recognized magic numbers as of 2019 are 2, 8, 20, 28, 50, 82, and 126.

Unbibium, also known as element 122 or eka-thorium, is a hypothetical chemical element; it has placeholder symbol Ubb and atomic number 122. Unbibium and Ubb are the temporary systematic IUPAC name and symbol respectively, which are used until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table of the elements, it is expected to follow unbiunium as the second element of the superactinides and the fourth element of the 8th period. Similarly to unbiunium, it is expected to fall within the range of the island of stability, potentially conferring additional stability on some isotopes, especially 306Ubb which is expected to have a magic number of neutrons (184).

<span class="mw-page-title-main">ISOLDE</span> Physics facility at CERN

The ISOLDE Radioactive Ion Beam Facility, is an on-line isotope separator facility located at the centre of the CERN accelerator complex on the Franco-Swiss border. Created in 1964, the ISOLDE facility started delivering radioactive ion beams (RIBs) to users in 1967. Originally located at the Synchro-Cyclotron (SC) accelerator, the facility has been upgraded several times most notably in 1992 when the whole facility was moved to be connected to CERN's ProtonSynchroton Booster (PSB). ISOLDE is currently the longest-running facility in operation at CERN, with continuous developments of the facility and its experiments keeping ISOLDE at the forefront of science with RIBs. ISOLDE benefits a wide range of physics communities with applications covering nuclear, atomic, molecular and solid-state physics, but also biophysics and astrophysics, as well as high-precision experiments looking for physics beyond the Standard Model. The facility is operated by the ISOLDE Collaboration, comprising CERN and sixteen (mostly) European countries. As of 2019, close to 1,000 experimentalists around the world are coming to ISOLDE to perform typically 50 different experiments per year.

Naturally occurring lutetium (71Lu) is composed of one stable isotope 175Lu and one long-lived radioisotope, 176Lu with a half-life of 37 billion years. Forty radioisotopes have been characterized, with the most stable, besides 176Lu, being 174Lu with a half-life of 3.31 years, and 173Lu with a half-life of 1.37 years. All of the remaining radioactive isotopes have half-lives that are less than 9 days, and the majority of these have half-lives that are less than half an hour. This element also has 18 meta states, with the most stable being 177mLu, 174mLu and 178mLu.

Indium (49In) consists of two primordial nuclides, with the most common (~ 95.7%) nuclide (115In) being measurably though weakly radioactive. Its spin-forbidden decay has a half-life of 4.41×1014 years, much longer than the currently accepted age of the Universe.

Naturally occurring nickel (28Ni) is composed of five stable isotopes; 58
Ni
, 60
Ni
, 61
Ni
, 62
Ni
and 64
Ni
, with 58
Ni
being the most abundant. 26 radioisotopes have been characterised with the most stable being 59
Ni
with a half-life of 76,000 years, 63
Ni
with a half-life of 100.1 years, and 56
Ni
with a half-life of 6.077 days. All of the remaining radioactive isotopes have half-lives that are less than 60 hours and the majority of these have half-lives that are less than 30 seconds. This element also has 8 meta states.

Sulfur (16S) has 23 known isotopes with mass numbers ranging from 27 to 49, four of which are stable: 32S (95.02%), 33S (0.75%), 34S (4.21%), and 36S (0.02%). The preponderance of sulfur-32 is explained by its production from carbon-12 plus successive fusion capture of five helium-4 nuclei, in the so-called alpha process of exploding type II supernovas.

Aluminium or aluminum (13Al) has 23 known isotopes from 21Al to 43Al and 4 known isomers. Only 27Al (stable isotope) and 26Al (radioactive isotope, t1/2 = 7.2×105 y) occur naturally, however 27Al comprises nearly all natural aluminium. Other than 26Al, all radioisotopes have half-lives under 7 minutes, most under a second. The standard atomic weight is 26.9815385(7). 26Al is produced from argon in the atmosphere by spallation caused by cosmic-ray protons. Aluminium isotopes have found practical application in dating marine sediments, manganese nodules, glacial ice, quartz in rock exposures, and meteorites. The ratio of 26Al to 10Be has been used to study the role of sediment transport, deposition, and storage, as well as burial times, and erosion, on 105 to 106 year time scales. 26Al has also played a significant role in the study of meteorites.

Helium (2He) has nine known isotopes, but only helium-3 (3He) and helium-4 (4He) are stable. All radioisotopes are short-lived; the longest-lived is 6He with half-life 806.92(24) milliseconds. The least stable is 10He, with half-life 260(40) yoctoseconds, though 2He may have an even shorter half-life.

Meitnerium (109Mt) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 266Mt in 1982, and this is also the only isotope directly synthesized; all other isotopes are only known as decay products of heavier elements. There are eight known isotopes, from 266Mt to 278Mt. There may also be two isomers. The longest-lived of the known isotopes is 278Mt with a half-life of 8 seconds. The unconfirmed heavier 282Mt appears to have an even longer half-life of 67 seconds.

Roentgenium (111Rg) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 272Rg in 1994, which is also the only directly synthesized isotope; all others are decay products of heavier elements. There are seven known radioisotopes, having mass numbers of 272, 274, and 278–282. The longest-lived isotope is 282Rg with a half-life of about 2 minutes, although the unconfirmed 283Rg and 286Rg may have longer half-lives of about 5.1 minutes and 10.7 minutes respectively.

Flerovium (114Fl) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 289Fl in 1999. Flerovium has six known isotopes, along with the unconfirmed 290Fl, and possibly two nuclear isomers. The longest-lived isotope is 289Fl with a half-life of 1.9 seconds, but 290Fl may have a longer half-life of 19 seconds.

<span class="mw-page-title-main">Nuclear drip line</span> Atomic nuclei decay delimiter

The nuclear drip line is the boundary beyond which atomic nuclei are unbound with respect to the emission of a proton or neutron.

The rms charge radius is a measure of the size of an atomic nucleus, particularly the proton distribution. The proton radius is about one femtometre = 10−15 metre. It can be measured by the scattering of electrons by the nucleus. Relative changes in the mean squared nuclear charge distribution can be precisely measured with atomic spectroscopy.

Unbiquadium, also known as element 124 or eka-uranium, is a hypothetical chemical element; it has placeholder symbol Ubq and atomic number 124. Unbiquadium and Ubq are the temporary IUPAC name and symbol, respectively, until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table, unbiquadium is expected to be a g-block superactinide and the sixth element in the 8th period. Unbiquadium has attracted attention, as it may lie within the island of stability, leading to longer half-lives, especially for 308Ubq which is predicted to have a magic number of neutrons (184).

References

  1. 1 2 3 4 5 6 7 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Silicon". CIAAW. 2009.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. 1 2 Crawford, H. L.; Tripathi, V.; Allmond, J. M.; et al. (2022). "Crossing N = 28 toward the neutron drip line: first measurement of half-lives at FRIB". Physical Review Letters. 129 (212501): 212501. Bibcode:2022PhRvL.129u2501C. doi: 10.1103/PhysRevLett.129.212501 . PMID   36461950. S2CID   253600995.
  6. 1 2 Yoshimoto, Masahiro; Suzuki, Hiroshi; Fukuda, Naoki; Takeda, Hiroyuki; Shimizu, Yohei; Yanagisawa, Yoshiyuki; Sato, Hiromi; Kusaka, Kensuke; Ohtake, Masao; Yoshida, Koichi; Michimasa, Shin’ichiro (2024). "Discovery of Neutron-Rich Silicon Isotopes 45,46Si". Progress of Theoretical and Experimental Physics. 2024 (10). Oxford University Press (OUP). doi: 10.1093/ptep/ptae155 . ISSN   2050-3911.
  7. "Beyond Six Nines: Ultra-enriched Silicon Paves the Road to Quantum Computing". NIST. 2014-08-11.
  8. Dwyer, K J; Pomeroy, J M; Simons, D S; Steffens, K L; Lau, J W (2014-08-30). "Enriching 28 Si beyond 99.9998 % for semiconductor quantum computing". Journal of Physics D: Applied Physics. 47 (34): 345105. doi:10.1088/0022-3727/47/34/345105. ISSN   0022-3727.
  9. Powell, Devin (1 July 2008). "Roundest Objects in the World Created". New Scientist . Retrieved 16 June 2015.
  10. Keats, Jonathon. "The Search for a More Perfect Kilogram". Wired. Vol. 19, no. 10. Retrieved 16 December 2023.
  11. Woosley, S.; Janka, T. (2006). "The physics of core collapse supernovae". Nature Physics. 1 (3): 147–154. arXiv: astro-ph/0601261 . Bibcode:2005NatPh...1..147W. CiteSeerX   10.1.1.336.2176 . doi:10.1038/nphys172. S2CID   118974639.
  12. Narlikar, Jayant V. (1995). From Black Clouds to Black Holes. World Scientific. p. 94. ISBN   978-9810220334.
  13. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  14. Watkins, G. D.; Corbett, J. W. (1961-02-15). "Defects in Irradiated Silicon. I. Electron Spin Resonance of the Si- A Center". Physical Review. 121 (4): 1001–1014. Bibcode:1961PhRv..121.1001W. doi:10.1103/PhysRev.121.1001. ISSN   0031-899X.
  15. Lică, R.; Rotaru, F.; Borge, M. J. G.; Grévy, S.; Negoiţă, F.; Poves, A.; Sorlin, O.; Andreyev, A. N.; Borcea, R.; Costache, C.; De Witte, H.; Fraile, L. M.; Greenlees, P. T.; Huyse, M.; Ionescu, A.; Kisyov, S.; Konki, J.; Lazarus, I.; Madurga, M.; Mărginean, N.; Mărginean, R.; Mihai, C.; Mihai, R. E.; Negret, A.; Nowacki, F.; Page, R. D.; Pakarinen, J.; Pucknell, V.; Rahkila, P.; Rapisarda, E.; Şerban, A.; Sotty, C. O.; Stan, L.; Stănoiu, M.; Tengblad, O.; Turturică, A.; Van Duppen, P.; Warr, N.; Dessagne, Ph.; Stora, T.; Borcea, C.; Călinescu, S.; Daugas, J. M.; Filipescu, D.; Kuti, I.; Franchoo, S.; Gheorghe, I.; Morfouace, P.; Morel, P.; Mrazek, J.; Pietreanu, D.; Sohler, D.; Stefan, I.; Şuvăilă, R.; Toma, S.; Ur, C. A. (11 September 2019). "Normal and intruder configurations in Si 34 populated in the β − decay of Mg 34 and Al 34". Physical Review C. 100 (3): 034306. arXiv: 1908.11626 . doi: 10.1103/PhysRevC.100.034306 .
  16. "Physicists find atomic nucleus with a 'bubble' in the middle". 24 October 2016. Retrieved 26 December 2023.
  17. Mutschler, A.; Lemasson, A.; Sorlin, O.; Bazin, D.; Borcea, C.; Borcea, R.; Dombrádi, Z.; Ebran, J.-P.; Gade, A.; Iwasaki, H.; Khan, E.; Lepailleur, A.; Recchia, F.; Roger, T.; Rotaru, F.; Sohler, D.; Stanoiu, M.; Stroberg, S. R.; Tostevin, J. A.; Vandebrouck, M.; Weisshaar, D.; Wimmer, K. (February 2017). "A proton density bubble in the doubly magic 34Si nucleus". Nature Physics. 13 (2): 152–156. arXiv: 1707.03583 . doi:10.1038/nphys3916.
  18. Bonetti, R.; Guglielmetti, A. (2007). "Cluster radioactivity: an overview after twenty years" (PDF). Romanian Reports in Physics. 59: 301–310. Archived from the original (PDF) on 19 September 2016.