Isotopes of silicon

Last updated

Isotopes of silicon  (14Si)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
28Si92.2% stable
29Si4.67%stable
30Si3.07%stable
31Si trace 2.62 h β 31P
32Sitrace157 yβ 32P
Standard atomic weight Ar°(Si)

Silicon (14Si) has 25 known isotopes, with mass number ranging from 22 to 46. 28Si (the most abundant isotope, at 92.24%), 29Si (4.67%), and 30Si (3.07%) are stable. The longest-lived radioisotope is 32Si, which occurs naturally in tiny quantities from cosmic ray spallation of argon. Its half-life has been determined to be approximately 157 years; it beta decays with energy 0.21 MeV to 32 P, which in turn beta-decays, with half-life 14.269 days to 32 S; neither step has gamma emission. After 32Si, 31Si has the second longest half-life at 157.2 minutes. All others have half-lives under 7 seconds.

Contents

A chart showing the relative abundances of the naturally occurring isotopes of silicon. Isotopes of Silicon.png
A chart showing the relative abundances of the naturally occurring isotopes of silicon.

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da) [4]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity [1]
[n 7] [n 4]
Natural abundance (mole fraction)
Excitation energyNormal proportion [1] Range of variation
22Si14822.03611(54)#28.7(11) ms β+, p (62%)21Mg0+
β+ (37%)22Al
β+, 2p (0.7%)20Na
23Si14923.02571(54)#42.3(4) msβ+, p (88%)22Mg3/2+#
β+ (8%)23Al
β+, 2p (3.6%)21Na
24Si141024.011535(21)143.2 (21) msβ+ (65.5%)24Al0+
β+, p (34.5%)23Mg
25Si141125.004109(11)220.6(10) msβ+ (65%)25Al5/2+
β+, p (35%)24Mg
26Si141225.99233382(12)2.2453(7) sβ+26Al0+
27Si141326.98670469(12)4.117(14) sβ+27Al5/2+
28Si141427.97692653442(55)Stable0+0.92223(19)0.92205–0.92241
29Si141528.97649466434(60)Stable1/2+0.04685(8)0.04678–0.04692
30Si141629.973770137(23)Stable0+0.03092(11)0.03082–0.03102
31Si141730.975363196(46)157.16(20) minβ31P3/2+
32Si141831.97415154(32)157(7) yβ32P0+ trace cosmogenic
33Si141932.97797696(75)6.18(18) sβ33P3/2+
34Si142033.97853805(86)2.77(20) sβ34P0+
34mSi4256.1(4) keV<210 nsIT34Si(3−)
35Si142134.984550(38)780(120) msβ35P7/2−#
β, n?34P
36Si142235.986649(77)503(2) msβ (88%)36P0+
β, n (12%)35P
37Si142336.99295(12)141.0(35) msβ (83%)37P(5/2−)
β, n (17%)36P
β, 2n?35P
38Si142437.99552(11)63(8) msβ (75%)38P0+
β, n (25%)37P
39Si142539.00249(15)41.2(41) msβ (67%)39P(5/2−)
β, n (33%)38P
β, 2n?37P
40Si142640.00608(13)31.2(26) msβ (62%)40P0+
β, n (38%)39P
β, 2n?38P
41Si142741.01417(32)#20.0(25) msβ, n (>55%)40P7/2−#
β (<45%)41P
β, 2n?39P
42Si142842.01808(32)#15.5(4 (stat), 16 (sys)) ms [5] β (51%)42P0+
β, n (48%)41P
β, 2n (1%)40P
43Si142943.02612(43)#13(4 (stat), 2 (sys)) ms [5] β, n (52%)42P3/2−#
β (27%)43P
β, 2n (21%)41P
44Si143044.03147(54)#4# ms [>360 ns]β?44P0+
β, n?43P
β, 2n?42P
45Si [6] 143145.03982(64)#4# ms3/2−#
46Si [6] 1432
This table header & footer:
  1. mSi  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.

Silicon-28

Silicon-28, the most abundant isotope of silicon, is of particular interest in the construction of quantum computers when highly enriched, as the presence of 29Si in a sample of silicon contributes to quantum decoherence. [7] Extremely pure (>99.9998%) samples of 28Si can be produced through selective ionization and deposition of 28Si from silane gas. [8] Due to the extremely high purity that can be obtained in this manner, the Avogadro project sought to develop a new definition of the kilogram by making a 93.75 mm (3.691 in) sphere of the isotope and determining the exact number of atoms in the sample. [9] [10]

Silicon-28 is produced in stars during the alpha process and the oxygen-burning process, and drives the silicon-burning process in massive stars shortly before they go supernova. [11] [12]

Silicon-29

Silicon-29 is of note as the only stable silicon isotope with a nonzero nuclear spin (I = 1/2). [13] As such, it can be employed in nuclear magnetic resonance and hyperfine transition studies, for example to study the properties of the so-called A-center defect in pure silicon. [14]

Silicon-34

Silicon-34 is a radioactive isotope with a half-life of 2.8 seconds. [1] In addition to the usual N = 20 closed shell, the nucleus also shows a strong Z = 14 shell closure, making it behave like a doubly magic spherical nucleus, except that it is also located two protons above an island of inversion. [15] Silicon-34 has an unusual "bubble" structure where the proton distribution is less dense at the center than near the surface, as the 2s1/2 proton orbital is almost unoccupied in the ground state, unlike in 36S where it is almost full. [16] [17] Silicon-34 is one of the known cluster decay emission particles; it is produced in the decay of 242Cm with a branching ratio of approximately 1×10−16. [18]

See also

Daughter products other than silicon

References

  1. 1 2 3 4 5 6 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Silicon". CIAAW. 2009.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. 1 2 Crawford, H. L.; Tripathi, V.; Allmond, J. M.; et al. (2022). "Crossing N = 28 toward the neutron drip line: first measurement of half-lives at FRIB". Physical Review Letters. 129 (212501): 212501. Bibcode:2022PhRvL.129u2501C. doi: 10.1103/PhysRevLett.129.212501 . PMID   36461950. S2CID   253600995.
  6. 1 2 Yoshimoto, Masahiro; Suzuki, Hiroshi; Fukuda, Naoki; Takeda, Hiroyuki; Shimizu, Yohei; Yanagisawa, Yoshiyuki; Sato, Hiromi; Kusaka, Kensuke; Ohtake, Masao; Yoshida, Koichi; Michimasa, Shin’ichiro (2024). "Discovery of Neutron-Rich Silicon Isotopes 45,46Si". Progress of Theoretical and Experimental Physics. 2024 (10). Oxford University Press (OUP). doi: 10.1093/ptep/ptae155 . ISSN   2050-3911.
  7. "Beyond Six Nines: Ultra-enriched Silicon Paves the Road to Quantum Computing". NIST. 2014-08-11.
  8. Dwyer, K J; Pomeroy, J M; Simons, D S; Steffens, K L; Lau, J W (2014-08-30). "Enriching 28 Si beyond 99.9998 % for semiconductor quantum computing" . Journal of Physics D: Applied Physics. 47 (34): 345105. doi:10.1088/0022-3727/47/34/345105. ISSN   0022-3727.
  9. Powell, Devin (1 July 2008). "Roundest Objects in the World Created". New Scientist . Retrieved 16 June 2015.
  10. Keats, Jonathon. "The Search for a More Perfect Kilogram". Wired. Vol. 19, no. 10. Retrieved 16 December 2023.
  11. Woosley, S.; Janka, T. (2006). "The physics of core collapse supernovae". Nature Physics. 1 (3): 147–154. arXiv: astro-ph/0601261 . Bibcode:2005NatPh...1..147W. CiteSeerX   10.1.1.336.2176 . doi:10.1038/nphys172. S2CID   118974639.
  12. Narlikar, Jayant V. (1995). From Black Clouds to Black Holes. World Scientific. p. 94. ISBN   978-9810220334.
  13. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  14. Watkins, G. D.; Corbett, J. W. (1961-02-15). "Defects in Irradiated Silicon. I. Electron Spin Resonance of the Si- A Center" . Physical Review. 121 (4): 1001–1014. Bibcode:1961PhRv..121.1001W. doi:10.1103/PhysRev.121.1001. ISSN   0031-899X.
  15. Lică, R.; Rotaru, F.; Borge, M. J. G.; Grévy, S.; Negoiţă, F.; Poves, A.; Sorlin, O.; Andreyev, A. N.; Borcea, R.; Costache, C.; De Witte, H.; Fraile, L. M.; Greenlees, P. T.; Huyse, M.; Ionescu, A.; Kisyov, S.; Konki, J.; Lazarus, I.; Madurga, M.; Mărginean, N.; Mărginean, R.; Mihai, C.; Mihai, R. E.; Negret, A.; Nowacki, F.; Page, R. D.; Pakarinen, J.; Pucknell, V.; Rahkila, P.; Rapisarda, E.; Şerban, A.; Sotty, C. O.; Stan, L.; Stănoiu, M.; Tengblad, O.; Turturică, A.; Van Duppen, P.; Warr, N.; Dessagne, Ph.; Stora, T.; Borcea, C.; Călinescu, S.; Daugas, J. M.; Filipescu, D.; Kuti, I.; Franchoo, S.; Gheorghe, I.; Morfouace, P.; Morel, P.; Mrazek, J.; Pietreanu, D.; Sohler, D.; Stefan, I.; Şuvăilă, R.; Toma, S.; Ur, C. A. (11 September 2019). "Normal and intruder configurations in Si 34 populated in the β − decay of Mg 34 and Al 34". Physical Review C. 100 (3): 034306. arXiv: 1908.11626 . doi: 10.1103/PhysRevC.100.034306 .
  16. "Physicists find atomic nucleus with a 'bubble' in the middle". 24 October 2016. Retrieved 26 December 2023.
  17. Mutschler, A.; Lemasson, A.; Sorlin, O.; Bazin, D.; Borcea, C.; Borcea, R.; Dombrádi, Z.; Ebran, J.-P.; Gade, A.; Iwasaki, H.; Khan, E.; Lepailleur, A.; Recchia, F.; Roger, T.; Rotaru, F.; Sohler, D.; Stanoiu, M.; Stroberg, S. R.; Tostevin, J. A.; Vandebrouck, M.; Weisshaar, D.; Wimmer, K. (February 2017). "A proton density bubble in the doubly magic 34Si nucleus". Nature Physics. 13 (2): 152–156. arXiv: 1707.03583 . doi:10.1038/nphys3916.
  18. Bonetti, R.; Guglielmetti, A. (2007). "Cluster radioactivity: an overview after twenty years" (PDF). Romanian Reports in Physics. 59: 301–310. Archived from the original (PDF) on 19 September 2016.