Isotopes of dysprosium

Last updated

Isotopes of dysprosium  (66Dy)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
154Dy synth 1.40×106 y [2] α 150Gd
156Dy0.056% stable
158Dy0.095%stable
160Dy2.33%stable
161Dy18.9%stable
162Dy25.5%stable
163Dy24.9%stable
164Dy28.3%stable
165Dysynth2.334 hβ165Ho
Standard atomic weight Ar°(Dy)

Naturally occurring dysprosium (66Dy) is composed of 7 stable isotopes, 156Dy, 158Dy, 160Dy, 161Dy, 162Dy, 163Dy and 164Dy, with 164Dy being the most abundant (28.18% natural abundance). Twenty-nine radioisotopes have been characterized, with the most stable being 154Dy with a half-life of 1.4 million years, 159Dy with a half-life of 144.4 days, and 166Dy with a half-life of 81.6 hours. All of the remaining radioactive isotopes have half-lives that are less than 10 hours, and the majority of these have half-lives that are less than 30 seconds. This element also has 12 meta states, with the most stable being 165mDy (half-life 1.257 minutes), 147mDy (half-life 55.7 seconds) and 145mDy (half-life 13.6 seconds).

Contents

The primary decay mode before the most abundant stable isotope, 164Dy, is electron capture, and the primary mode after is beta decay. The primary decay products before 164Dy are terbium isotopes, and the primary products after are holmium isotopes. Dysprosium is the heaviest element to have isotopes that are predicted to be stable rather than observationally stable isotopes that are predicted to be radioactive.

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [5]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity [1]
[n 7] [n 4]
Natural abundance (mole fraction)
Excitation energyNormal proportion [1] Range of variation
139Dy6673138.95953(54)#600(200) ms β+ (~89%)139Tb(7/2+)
β+, p (~11%)138Gd
140Dy6674139.95402(43)#700# msβ+?140Tb0+
β+, p?139Gd
140mDy2166.1(5) keV7.0(5) μs IT 140Dy8−
141Dy6675140.95128(32)#0.90(14) sβ+141Tb(9/2−)
β+, p?140Gd
142Dy6676141.94619(78)#2.3(3) sβ+ (90%)142Tb0+
EC (10%)
β+, p (0.06%)141Gd
143Dy6677142.943994(14)5.6(10) sβ+143Tb(1/2+)
β+, p?142Gd
143m1Dy310.7(6) keV3.0(3) sβ+143Tb(11/2−)
β+, p?142Gd
143m2Dy406.3(8) keV1.2(3) μsIT143Dy(7/2−)
144Dy6678143.9392695(77)9.1(4) sβ+144Tb0+
β+, p?143Gd
145Dy6679144.9374740(70)9.5(10) sβ+145Tb(1/2+)
β+, p?144Gd
145mDy118.2(2) keV14.1(7) sβ+145Tb(11/2−)
β+, p (~50%)144Gd
146Dy6680145.9328445(72)33.2(7) sβ+146Tb0+
146mDy2934.5(4) keV150(20) msIT146Dy10+
147Dy6681146.9310827(95)67(7) sβ+ (99.95%)147Tb(1/2+)
β+, p (0.05%)146Gd
147m1Dy750.5(4) keV55.2(5) sβ+ (68.9%)147Tb(11/2−)
IT (31.1%)147Dy
147m2Dy3407.2(8) keV0.40(1) μsIT147Dy(27/2−)
148Dy6682147.9271499(94)3.3(2) minβ+148Tb0+
148mDy2919.1(10) keV471(20) nsIT148Dy10+
149Dy6683148.9273275(99)4.20(14) minβ+149Tb7/2−
149mDy2661.1(4) keV490(15) msIT (99.3%)149Dy27/2−
β+ (0.7%)149Tb
150Dy6684149.9255931(46)7.17(5) minβ+ (66.4%)150Tb0+
α (33.6%)146Gd
151Dy6685150.9261913(35)17.9(3) minβ+ (94.4%)151Tb7/2−
α (5.6%)147Gd
152Dy6686151.9247253(49)2.38(2) hEC (99.90%)152Tb0+
α (0.100%)148Gd
153Dy6687152.9257717(43)6.4(1) hβ+ (99.99%)153Tb7/2−
α (0.0094%)149Gd
154Dy6688153.9244289(80)1.40(8)×106 y [6] α [n 8] 150Gd0+
155Dy6689154.925758(10)9.9(2) hβ+155Tb3/2−
155mDy234.33(3) keV6(1) μsIT155Dy11/2−
156Dy6690155.9242836(11) Observationally Stable [n 9] 0+5.6(3)×10−4
157Dy6691156.9254696(55)8.14(4) hβ+157Tb3/2−
157m1Dy161.99(3) keV1.3(2) μsIT157Dy9/2+
157m2Dy199.38(7) keV21.6(16) msIT157Dy11/2−
158Dy6692157.9244148(25)Observationally Stable [n 10] 0+9.5(3)×10−4
159Dy6693158.9257459(15)144.4(2) dEC159Tb3/2−
159mDy352.77(14) keV122(3) μsIT159Dy11/2−
160Dy6694159.92520358(75)Observationally Stable [n 11] 0+0.02329(18)
161Dy6695160.92693943(75)Observationally Stable [n 12] 5/2+0.18889(42)
161mDy485.56(16) keV0.76(17) μsIT161Dy11/2−
162Dy6696161.92680451(75)Observationally Stable [n 13] 0+0.25475(36)
162mDy2188.1(3) keV8.3(3) μsIT162Dy8+
163Dy6697162.92873722(74)Stable [n 14] 5/2−0.24896(42)
164Dy [n 15] 6698163.92918082(75)Stable0+0.28260(54)
165Dy6699164.93170940(75)2.332(4) hβ165Ho7/2+
165mDy108.1552(13) keV1.257(6) minIT (97.76%)165Dy1/2−
β (2.24%)165Ho
166Dy66100165.93281281(86)81.6(1) hβ166Ho0+
167Dy66101166.9356824(43)6.20(8) minβ167Ho(1/2−)
168Dy66102167.93713(15)8.7(3) minβ168Ho0+
168mDy1378.2(6) keV0.57(7) μsIT168Dy(4−)
169Dy66103168.94032(32)39(8) sβ169Ho(5/2)−
169mDy166.1(5) keV1.26(17) μsIT169Dy(1/2−)
170Dy66104169.94234(22)#54.9(80) sβ170Ho0+
170mDy1643.8(3) keV0.99(4) μsIT170Dy(6+)
171Dy66105170.94631(22)#4.07(40) sβ171Ho7/2−#
172Dy66106171.94873(32)#3.4(2) sβ172Ho0+
172mDy1278(1) keV710(50) msIT (81%)172Dy(8−)
β (19%)172Ho
173Dy66107172.95304(43)#1.43(20) sβ173Ho9/2+#
β, n?172Ho
174Dy66108173.95585(54)#1# s
[>300 ns]
β?174Ho0+
β, n?173Ho
175Dy66109174.96057(54)#390# ms
[>550 ns]
β?175Ho1/2-#
β, n?174Ho
176Dy66110175.96392(54)#440# ms
[>550 ns]
β?176Ho0+
β, n?175Ho
This table header & footer:
  1. mDy  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    p: Proton emission
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. Theorized to also undergo β+β+ decay to 154Gd
  9. Believed to undergo α decay to 152Gd or β+β+ decay to 156Gd with a half-life over 1018 years
  10. Believed to undergo α decay to 154Gd or β+β+ decay to 158Gd
  11. Believed to undergo α decay to 156Gd
  12. Believed to undergo α decay to 157Gd
  13. Believed to undergo α decay to 158Gd
  14. Can undergo bound-state β decay to 163Ho66+ with a half-life of 47 days when fully ionized [7]
  15. Heaviest theoretically stable nuclide

Dysprosium-165

The radioactive isotope 165Dy, with a half-life of 2.334 hours, has radiopharmaceutical uses in radiation synovectomy of the knee. It had been previously performed with colloidal-sized particles containing longer-lived isotopes such as 198Au and 90Y. The major problem with the usage of those isotopes was radiation leakage out of the knee. 165Dy, with its shorter half-life and thus shorter period of potential radiation leakage, is more suitable for the procedure. [8]

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. Chiera, Nadine Mariel; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2022-05-28). "High precision half-life measurement of the extinct radio-lanthanide Dysprosium-154". Scientific Reports. 12 (1). Springer Science and Business Media LLC. doi:10.1038/s41598-022-12684-6. ISSN   2045-2322.
  3. "Standard Atomic Weights: Dysprosium". CIAAW. 2001.
  4. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. Chiera, Nadine Mariel; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2022-05-28). "High precision half-life measurement of the extinct radio-lanthanide Dysprosium-154". Scientific Reports. 12 (1). Springer Science and Business Media LLC: 8988. Bibcode:2022NatSR..12.8988C. doi: 10.1038/s41598-022-12684-6 . ISSN   2045-2322. PMC   9148308 . PMID   35643721.
  7. M. Jung; et al. (1992-10-12). "First observation of bound-state β decay". Physical Review Letters. 69 (15): 2164–2167. Bibcode:1992PhRvL..69.2164J. doi:10.1103/PhysRevLett.69.2164. PMID   10046415.
  8. Hnatowich, D. J.; Kramer, R. I.; Sledge, C. B.; Noble, J.; Shortkroff, S. (1978-03-01). "Dysprosium-165 ferric hydroxide macroaggregates for radiation synovectomy. [Rabbits]". J. Nucl. Med.; (United States). 19 (3). OSTI   5045140.