Isotopes of radon

Last updated

Isotopes of radon  (86Rn)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
210Rn synth 2.4 h α 96% 206Po
β+ 4% 210At
211Rnsynth14.6 hβ+72.6% 211At
α27.4% 207Po
220Rn trace 55.6 sα 216Po
222Rn trace3.8215 dα 218Po

There are 39 known isotopes of radon (86Rn), from 193Rn to 231Rn; all are radioactive. The most stable isotope is 222Rn with a half-life of 3.8215 days, which decays into 218
Po
.

Six isotopes of radon, 217-222Rn, occur in trace quantities in nature as decay products of, respectively, 217At, 218At, 223Ra, 224Ra, 225Ra, and 226Ra. 217Rn and 221Rn are produced in rare branches in the decay chain of trace quantities of 237Np; 222Rn (and also 218Rn in a rare branch) is an intermediate step in the decay chain of 238U; 219Rn is an intermediate step in the decay chain of 235U; and 220Rn occurs in the decay chain of 232Th.

List of isotopes

Nuclide
[n 1]
Historic
name
Z N Isotopic mass (Da) [2]
[n 2] [n 3]
Half-life [1]
Decay
mode
[1]
Daughter
isotope

Spin and
parity [1]
[n 4] [n 5]
Isotopic
abundance
Excitation energy [n 5]
193Rn86107193.009708(27)1.15(27) ms α 189Po(3/2−)
194Rn86108194.006146(18)780(160) μsα190Po0+
195Rn86109195.005422(55)7(3) msα191Po3/2−
195mRn [n 6] 80(50) keV6(3) msα191Po13/2+
196Rn86110196.002120(15)4.7(11) msα192Po0+
197Rn86111197.001621(17)54(6) msα193Po3/2−
197mRn199(11) keV25.6(25) msα193Po13/2+
198Rn86112197.998679(14)64.4(16) msα194Po0+
199Rn86113198.9983254(78)590(30) msα195Po3/2−
199mRn220(11) keV310(20) msα195Po13/2+
200Rn86114199.9957053(62)1.09(16) sα196Po0+
200mRn2320(20)# keV28(9) μsIT200Rn
201Rn86115200.995591(11)7.0(4) sα197Po3/2−
201mRn245(12) keV3.8(1) sα197Po13/2+
202Rn86116201.993264(19)9.7(1) sα (78%)198Po0+
β+ (22%)202At
202mRn2310(50)# keV2.22(7) μsIT202Rn11−#
203Rn86117202.9933612(62)44.2(16) sα (66%)199Po3/2−
β+ (34%)203At
203mRn362(4) keV26.9(5) sα (75%)199Po13/2+
β+ (25%)203At
204Rn86118203.9914437(80)1.242(23) minα (72.4%)200Po0+
β+ (27.6%)204At
205Rn86119204.9917232(55)170(4) sβ+ (75.4%)205At5/2−
α (24.6%)201Po
205mRn657.1(5) keV>10 sIT205Rn13/2+#
206Rn86120205.9901954(92)5.67(17) minα (62%)202Po0+
β+ (38%)206At
207Rn86121206.9907302(51)9.25(17) minβ+ (79%)207At5/2−
α (21%)203Po
207mRn899.1(10) keV184.5(9) μsIT207Rn13/2+
208Rn86122207.989635(11)24.35(14) minα (62%)204Po0+
β+ (38%)208At
208mRn1828.3(4) keV487(12) nsIT208Rn8+
209Rn86123208.990401(11)28.8(10) minβ+ (83%)209At5/2−
α (17%)205Po
209m1Rn1174.01(13) keV13.4(13) μsIT209Rn13/2+
209m2Rn3636.81(23) keV3.0(3) μsIT209Rn35/2+
210Rn86124209.9896889(49)2.4(1) hα (96%)206Po0+
β+ (4%)210At
210m1Rn1710(30) keV644(40) nsIT210Rn8+
210m2Rn3857(30) keV1.06(5) μsIT210Rn17−
210m3Rn6514(30) keV1.04(7) μsIT210Rn23+
211Rn86125210.9906008(73)14.6(2) hβ+ (72.6%)211At1/2−
α (27.4%)207Po
211m1Rn1603(14)# keV596(28) nsIT211Rn17/2−
211m2Rn8905(20)# keV201(4) nsIT211Rn63/2−
212Rn86126211.9907039(33)23.9(12) minα208Po0+
212m1Rn1639.68(15) keV118(14) nsIT212Rn6+
212m2Rn1694.1(3) keV910(30) nsIT212Rn8+
212m3Rn6174.2(3) keV102(4) nsIT212Rn22+
212m4Rn8579.2(4) keV154(14) nsIT212Rn30+
213Rn86127212.9938851(36)19.5(1) msα [n 7] 209Po9/2+#
213m1Rn1682(10) keV1.00(21) μsIT213Rn(25/2+)
213m2Rn2205(10) keV1.36(7) μsIT213Rn(31/2−)
213m3Rn5965(14) keV164(11) nsIT213Rn(55/2+)
214Rn86128213.9953627(99)259(3) nsα 210Po 0+
214mRn4595.4(18) keV245(30) nsIT214Rn(22+)
215Rn86129214.9987450(65)2.30(10) μsα [n 8] 211Po9/2+
216Rn86130216.0002719(62)29(4) μsα212Po0+
217Rn86131217.0039276(45)593(38) μsα213Po9/2+Trace [n 9]
218Rn86132218.0056011(25)33.75(15) msα214Po0+Trace [n 10]
219RnActinon
Actinium emanation
86133219.0094787(23)3.96(1) sα [n 11] 215Po5/2+Trace [n 12]
220RnThoron
Thorium emanation
86134220.0113924(19)55.6(1) sα [n 13] 216Po0+Trace [n 14]
221Rn86135221.0155356(61)25.7(5) minβ (78%)221Fr7/2+Trace [n 9]
α (22%)217Po
222Rn [n 15] Radon [n 16]
Radium emanation
Emanation
Emanon
Niton
86136222.0175760(21)3.8215(2) dα [n 17] 218Po0+Trace [n 10]
223Rn86137223.0218893(84)24.3(4) minβ223Fr7/2+
α? [n 18] 219Po
224Rn86138224.024096(11)107(3) minβ224Fr0+
225Rn86139225.028486(12)4.66(4) minβ225Fr7/2−
226Rn86140226.030861(11)7.4(1) minβ226Fr0+
227Rn86141227.035304(15)20.2(4) sβ227Fr(3/2+)
228Rn86142228.037835(19)65(2) sβ228Fr0+
229Rn86143229.042257(14)11.9(13) sβ229Fr(5/2+)
230Rn86144230.04527(22)#24# s
[>300 ns]
0+
231Rn86145231.04997(32)#2# s
[>300 ns]
1/2+#
This table header & footer:
  1. mRn  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. () spin value  Indicates spin with weak assignment arguments.
  5. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Order of ground state and isomer is uncertain.
  7. Theoretically capable of electron capture to 213At; the branching ratio is expected to be <5.8×10−4% (partial half-life >56.0 min) [3]
  8. Theoretically capable of electron capture to 215At; the branching ratio is expected to be <1.0×10−11% (partial half-life >266 d) [4]
  9. 1 2 Intermediate decay product of 237Np
  10. 1 2 Intermediate decay product of 238U
  11. Theoretically capable of β decay to 219Fr
  12. Intermediate decay product of 235U
  13. Theoretically capable of ββ decay to 220Ra
  14. Intermediate decay product of 232Th
  15. Most common isotope
  16. Source of element's name
  17. Theoretically capable of ββ decay to 222Ra and perhaps β decay to 222Fr [5]
  18. Theoretically capable of α decay with a partial half-life of ~3.65×108 seconds (~11.6 years; branching ratio ~4×10−4%). [6] [7]

References

  1. 1 2 3 4 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  3. "Adopted Levels for 213Rn" (PDF). NNDC Chart of Nuclides.
  4. "Adopted Levels for 215Rn" (PDF). NNDC Chart of Nuclides.
  5. Belli, P.; Bernabei, R.; Cappella, C.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Di Marco, A.; Incicchitti, A.; Poda, D.V.; Polischuk, O.G.; Tretyak, V.I. (2014). "Investigation of rare nuclear decays with BaF2 crystal scintillator contaminated by radium". European Physical Journal A. 50 (9): 134–143. arXiv: 1407.5844 . Bibcode:2014EPJA...50..134B. doi:10.1140/epja/i2014-14134-6. S2CID   118513731.
  6. Sun, Xiao-Dong; Duan, Chao; Deng, Jun-Gang; Guo, Ping; Li, Xiao-Hua (2017-01-18). "Systematic study of α decay for odd-A nuclei within a two-potential approach". Physical Review C. 95 (1). American Physical Society: 014319. arXiv: 1903.07301 . doi:10.1103/PhysRevC.95.014319.
  7. "Adopted Levels for 223Rn" (PDF). NNDC Chart of Nuclides.