Isotopes of ruthenium

Last updated

Isotopes of ruthenium  (44Ru)
Main isotopes [1] Decay
Isotope abun­dance half-life (t1/2) mode pro­duct
96Ru5.54% stable
97Ru synth 2.837 d ε 97Tc
98Ru1.87%stable
99Ru12.8%stable
100Ru12.6%stable
101Ru17.1%stable
102Ru31.6%stable
103Rusynth39.245 d β 103Rh
104Ru18.6%stable
106Rusynth371.8 dβ 106Rh
Standard atomic weight Ar°(Ru)

Naturally occurring ruthenium (44Ru) is composed of seven stable isotopes: 96, 98-102, 104 (of which the first and last may in the future be found radioactive). Additionally, 27 synthetic radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru with a half-life of 371.8 days or 1.018 years, 103Ru, with a half-life of 39.245 days, and 97Ru with a half-life of 2.837 days.

Contents

The other known isotopes run from 87Ru to 120Ru, and most of these have half-lives that are less than five minutes, except 94Ru (51.8 minutes), 95Ru (1.607 hours), and 105Ru (4.44 hours).

The primary decay mode before the most abundant isotope, 102Ru, is electron capture to isotopes of technetium, and after beta emission to isotopes of rhodium. Double beta decay is the allowed mode for the two observationally stable isotopes: 96Ru and 104Ru.

Because of the volatility of ruthenium tetroxide (RuO
4
), ruthenium isotopes with relatively short half-life are considered the next most hazardous airborne isotopes, after iodine-131, in case of release by a nuclear accident. [4] [5] [6] The two most important isotopes of ruthenium so released are those with the longest half-life: 103Ru 106Ru. [5]

Ruthenium-96 Ruthenium-96.png
Ruthenium-96

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da) [7]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity [1]
[n 7] [n 4]
Natural abundance (mole fraction)
Excitation energy [n 4] Normal proportion [1] Range of variation
85Ru444184.96712(54)#1# ms
[> 400 ns]
3/2−#
86Ru444285.95731(43)#50# ms
[> 400 ns]
0+
87Ru444386.95091(43)#50# ms
[> 1.5 μs]
1/2−#
88Ru444487.941760(20) [8] 1.5(3) s β+ (>96.4%)88Tc0+
β+, p (<3.6%)87Mo
89Ru444588.937338(26)1.32(3) sβ+ (96.7%)89Tc(9/2+)
β+, p (3.1%)88Mo
90Ru444689.9303444(40)11.7(9) sβ+90Tc0+
91Ru444790.9267415(24)8.0(4) sβ+91Tc(9/2+)
91mRu432(31) keV [9] 7.6(8) sβ+ (>99.9%)91Tc(1/2−)
β+, p (?%)90Mo
92Ru444891.9202344(29)3.65(5) minβ+92Tc0+
92mRu2833.9(18) keV100(8) nsIT92Ru(8+)
93Ru444992.9171044(22)59.7(6) sβ+93Tc(9/2)+
93m1Ru734.40(10) keV10.8(3) sβ+ (78.0%)93Tc(1/2)−
IT (22.0%)93Ru
β+, p (0.027%)92Mo
93m2Ru2082.5(9) keV2.30(7) μsIT93Ru(21/2)+
94Ru445093.9113429(34)51.8(6) minβ+94Tc0+
94mRu2644.1(4) keV67.5(28) μsIT94Ru8+
95Ru445194.910404(10)1.607(4) hβ+95Tc5/2+
96Ru445295.90758891(18) Observationally Stable [n 8] 0+0.0554(14)
97Ru445396.9075458(30)2.8370(14) dβ+97Tc5/2+
98Ru445497.9052867(69)Stable0+0.0187(3)
99Ru445598.90593028(37)Stable5/2+0.1276(14)
100Ru445699.90421046(37)Stable0+0.1260(7)
101Ru [n 9] 4457100.90557309(44)Stable5/2+0.1706(2)
101mRu527.56(10) keV17.5(4) μsIT101Ru11/2−
102Ru [n 9] 4458101.90434031(45)Stable0+0.3155(14)
103Ru [n 9] 4459102.90631485(47)39.245(8) dβ103Rh3/2+
103mRu238.2(7) keV1.69(7) msIT103Ru11/2−
104Ru [n 9] 4460103.9054253(27)Observationally Stable [n 10] 0+0.1862(27)
105Ru [n 9] 4461104.9077455(27)4.439(11) hβ105Rh3/2+
105mRu20.606(14) keV340(15) nsIT105Ru5/2+
106Ru [n 9] 4462105.9073282(58)371.8(18) dβ106Rh0+
107Ru4463106.9099698(93)3.75(5) minβ107Rh(5/2)+
108Ru4464107.9101858(93)4.55(5) minβ108Rh0+
109Ru4465108.9133237(96)34.4(2) sβ109Rh(5/2+)
109mRu96.14(15) keV680(30) nsIT109Ru(5/2−)
110Ru4466109.9140385(96)12.04(17) sβ110Rh0+
111Ru4467110.917568(10)2.12(7) sβ111Rh5/2+
112Ru4468111.918807(10)1.75(7) sβ112Rh0+
113Ru4469112.922847(41)0.80(5) sβ113Rh(1/2+)
113mRu131(33) keV510(30) msβ (?%)113Rh(7/2−)
IT (?%)113Ru
114Ru4470113.9246144(38)0.54(3) sβ114Rh0+
β-, n?113Rh
β-, 2n?112Rh
115Ru4471114.929033(27)318(19) msβ115Rh(1/2+)
β-, n?114Rh
115mRu82(6) keV76(6) msβ (?%)115Rh(7/2−)
IT (?%)115Ru
116Ru4472115.9312192(40)204(6) msβ116Rh0+
β-, n?115Rh
117Ru4473116.93614(47)151(3) msβ117Rh3/2+#
β-, n?116Rh
117mRu185.0(4) keV2.49(6) μsIT117Ru7/2−#
118Ru4474117.93881(22)#99(3) msβ118Rh0+
β-, n?117Rh
119Ru4475118.94409(32)#69.5(20) msβ119Rh3/2+#
β-, n?118Rh
β-, 2n?117Rh
119mRu227.1(7) keV384(22) nsIT119Ru
120Ru4476119.94662(43)#45(2) msβ120Rh0+
121Ru4477120.95210(43)#29(2) msβ121Rh3/2+#
122Ru4478121.95515(54)#25(1) msβ122Rh0+
123Ru4479122.96076(54)#19(2) msβ123Rh3/2+#
124Ru4480123.96394(64)#15(3) msβ124Rh0+
125Ru4481124.96954(32)#12# ms
[> 550 ns]
3/2+#
This table header & footer:
  1. mRu  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. Believed to undergo β+β+ decay to 96Mo with a half-life over 8×1019 years
  9. 1 2 3 4 5 6 Fission product
  10. Believed to undergo ββ decay to 104Pd

Alleged ruthenium-106 leak

In September 2017 an estimated amount of 100 to 300 TBq (0.3 to 1 g) of 106Ru was released in Russia, probably in the Ural region. It was, after ruling out release from a reentering satellite, concluded that the source was either in nuclear fuel cycle facilities or radioactive source production. In France levels up to 0.036mBq/m3 of air were measured. It was estimated that for distances of the order of a few tens of kilometres, contamination levels may have exceeded the limits for non-dairy foodstuffs. [10]

Asteroid that ended the Cretaceous period

The ratios of the amounts of ruthenium isotopes were used to determine the age of the asteroid which exterminated the dinosaurs at the end of the Cretaceous period, and to show that it originated beyond Jupiter in the outer solar system. [11]

See also

Daughter products other than ruthenium

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3) 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Ruthenium". CIAAW. 1983.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Ronneau, C., Cara, J., & Rimski-Korsakov, A. (1995). Oxidation-enhanced emission of ruthenium from nuclear fuel. Journal of Environmental Radioactivity, 26(1), 63-70.
  5. 1 2 Backman, U., Lipponen, M., Auvinen, A., Jokiniemi, J., & Zilliacus, R. (2004). Ruthenium behaviour in severe nuclear accident conditions. Final report (No. NKS–100). Nordisk Kernesikkerhedsforskning.
  6. Beuzet, E., Lamy, J. S., Perron, H., Simoni, E., & Ducros, G. (2012). Ruthenium release modelling in air and steam atmospheres under severe accident conditions using the MAAP4 code [ dead link ]. Nuclear Engineering and Design, 246, 157-162.
  7. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3) 030003. doi:10.1088/1674-1137/abddaf.
  8. Kimura, S.; Wada, M.; Fu, C. Y.; Fukuda, N.; Hirayama, Y.; Hou, D. S.; Iimura, S.; Ishiyama, H.; Ito, Y.; Kubono, S.; Kusaka, K.; Michimasa, S.; Miyatake, H.; Nishimura, S.; Niwase, T.; Phong, V.; Rosenbusch, M.; Schatz, H.; Schury, P.; Shimizu, Y.; Suzuki, H.; Takamine, A.; Takeda, H.; Togano, Y.; Watanabe, Y. X.; Xian, W. D.; Yanagisawa, Y.; Yeung, T. T.; Yoshimoto, M.; Zha, S. (8 October 2025). "Precision Mass Measurements around Mo 84 Rule Out ZrNb Cycle Formation in the Rapid Proton-Capture Process at Type I X-Ray Bursts". Physical Review Letters. 135 (15). doi:10.1103/2dyn-q7wp.
  9. Xing, Y. M.; Yuan, C. X.; Wang, M.; Zhang, Y. H.; Zhou, X. H.; Litvinov, Yu. A.; Blaum, K.; Xu, H. S.; Bao, T.; Chen, R. J.; Fu, C. Y.; Gao, B. S.; Ge, W. W.; He, J. J.; Huang, W. J.; Liao, T.; Li, J. G.; Li, H. F.; Litvinov, S.; Naimi, S.; Shuai, P.; Sun, M. Z.; Wang, Q.; Xu, X.; Xu, F. R.; Yamaguchi, T.; Yan, X. L.; Yang, J. C.; Yuan, Y. J.; Zeng, Q.; Zhang, M.; Zhou, X. (11 January 2023). "Isochronous mass measurements of neutron-deficient nuclei from Sn 112 projectile fragmentation". Physical Review C. 107 (1). doi:10.1103/PhysRevC.107.014304.
  10. Detection of ruthenium 106 in France and in Europe, IRSN France (9 Nov 2017)
  11. Dunham, Will (15 August 2024). "Asteroid that doomed the dinosaurs originated beyond Jupiter". The Globe and Mail. Retrieved 8 July 2025. ruthenium shows distinct isotopic compositions between inner and outer solar system materials