Isotopes of silver

Last updated

Isotopes of silver  (47Ag)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
105Ag synth 41.29 d ε 105Pd
106mAgsynth8.28 dε 106Pd
107Ag51.8% stable
108mAgsynth439 yε 108Pd
IT 108Ag
109Ag48.2%stable
110m2Agsynth249.86 d β 110Cd
111Agsynth7.43 dβ 111Cd
Standard atomic weight Ar°(Ag)

Naturally occurring silver (47Ag) is composed of the two stable isotopes 107Ag and 109Ag in almost equal proportions, with 107Ag being slightly more abundant (51.839% natural abundance). Notably, silver is the only element with multiple NMR-active isotopes all having spin 1/2. Thus both 107Ag and 109Ag nuclei produce narrow lines in nuclear magnetic resonance spectra. [4]

Contents

40 radioisotopes have been characterized with the most stable being 105Ag with a half-life of 41.29 days, 111Ag with a half-life of 7.43 days, and 112Ag with a half-life of 3.13 hours.

All of the remaining radioactive isotopes have half-lives that are less than an hour, and the majority of these have half-lives that are less than 3 minutes. This element has numerous meta states, with the most stable being 108mAg (half-life 439 years), 110mAg (half-life 249.86 days) and 106mAg (half-life 8.28 days).

Known isotopes of silver range in atomic weight from 92Ag to 132Ag. The primary decay mode before the most abundant stable isotope, 107Ag, is electron capture and the primary mode after is beta decay. The primary decay products before 107Ag are palladium (element 46) isotopes and the primary products after are cadmium (element 48) isotopes.

The palladium isotope 107Pd decays by beta emission to 107Ag with a half-life of 6.5 million years. Iron meteorites are the only objects with a high enough palladium/silver ratio to yield measurable variations in 107Ag abundance. Radiogenic 107Ag was first discovered in the Santa Clara meteorite in 1978.

The discoverers[ who? ] suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus 107Ag correlations observed in bodies, which have clearly been melted since the accretion of the Solar System, must reflect the presence of live short-lived nuclides in the early Solar System.

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [5]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6] [n 7]
Spin and
parity [1]
[n 8] [n 4]
Natural abundance (mole fraction)
Excitation energy [n 4] Normal proportion [1] Range of variation
92Ag474591.95971(43)#1# ms
[>400 ns]
β+?92Pd
p?91Pd
93Ag474692.95019(43)#228(16) ns β+?93Pd9/2+#
p?92Pd
β+, p?92Rh
94Ag474793.94374(43)#27(2) msβ+ (>99.8%)94Pd0+#
β+, p (<0.2%)93Rh
94m1Ag1350(400)# keV470(10) msβ+ (83%)94Pd(7+)
β+, p (17%)93Rh
94m2Ag6500(550)# keV400(40) msβ+ (~68.4%)94Pd(21+)
β+, p (~27%)93Rh
p (4.1%)93Pd
2p (0.5%)92Rh
95Ag474894.93569(43)#1.78(6) sβ+ (97.7%)95Pd(9/2+)
β+, p (2.3%)94Rh
95m1Ag344.2(3) keV<0.5 s IT 95Ag(1/2−)
95m2Ag2531.3(15) keV<16 msIT95Ag(23/2+)
95m3Ag4860.0(15) keV<40 msIT95Ag(37/2+)
96Ag474995.93074(10)4.45(3) sβ+ (95.8%)96Pd(8)+
β+, p (4.2%)95Rh
96m1Ag [n 9] 0(50)# keV6.9(5) sβ+ (85.1%)96Pd(2+)
β+, p (14.9%)95Rh
96m2Ag2461.4(3) keV103.2(45) μsIT96Ag(13−)
96m3Ag2686.7(4) keV1.561(16) μsIT96Ag(15+)
96m4Ag6951.8(14) keV132(17) nsIT96Ag(19+)
97Ag475096.923881(13)25.5(3) sβ+97Pd(9/2)+
97mAg620(40) keV100# msIT?97Ag1/2−#
98Ag475197.92156(4)47.5(3) sβ+98Pd(6)+
β+, p (.0012%)97Rh
98mAg107.28(10) keV161(7) nsIT98Ag(4+)
99Ag475298.917646(7)2.07(5) minβ+99Pd(9/2)+
99mAg506.2(4) keV10.5(5) sIT99Ag(1/2−)
100Ag475399.916115(5)2.01(9) minβ+100Pd(5)+
100mAg15.52(16) keV2.24(13) minIT?100Ag(2)+
β+?100Pd
101Ag4754100.912684(5)11.1(3) minβ+101Pd9/2+
101mAg274.1(3) keV3.10(10) sIT101Ag(1/2)−
102Ag4755101.911705(9)12.9(3) minβ+102Pd5+
102mAg9.40(7) keV7.7(5) minβ+ (51%)102Pd2+
IT (49%)102Ag
103Ag4756102.908961(4)65.7(7) minβ+103Pd7/2+
103mAg134.45(4) keV5.7(3) sIT103Ag1/2−
104Ag4757103.908624(5)69.2(10) minβ+104Pd5+
104mAg6.90(22) keV33.5(20) minβ+ (>99.93%)104Pd2+
IT (<0.07%)104Ag
105Ag4758104.906526(5)41.29(7) dβ+105Pd1/2−
105mAg25.468(16) keV7.23(16) minIT (99.66%)105Ag7/2+
β+ (.34%)105Pd
106Ag4759105.906663(3)23.96(4) minβ+106Pd1+
β?106Cd
106mAg89.66(7) keV8.28(2) dβ+106Pd6+
IT?106Ag
107Ag [n 10] 4760106.9050915(26)Stable1/2−0.51839(8)
107mAg93.125(19) keV44.3(2) sIT107Ag7/2+
108Ag [6] 4761107.9059502(26)2.382(11) minβ (97.15%)108Cd1+
EC (2.57%)108Pd
β+ (0.283%)
108mAg [6] 109.466(7) keV439(9) y EC (91.3%)108Pd6+
IT (8.7%)108Ag
109Ag [n 11] 4762108.9047558(14)Stable1/2−0.48161(8)
109mAg [n 11] 88.0337(10) keV39.79(21) sIT109Ag7/2+
110Ag4763109.9061107(14)24.56(11) sβ (99.70%)110Cd1+
EC (0.30%)110Pd
110m1Ag1.112(16) keV660(40) nsIT110Ag2−
110m2Ag117.59(5) keV249.863(24) dβ (98.67%)110Cd6+
IT (1.33%)110Ag
111Ag [n 11] 4764110.9052968(16)7.433(10) dβ111Cd1/2−
111mAg59.82(4) keV64.8(8) sIT (99.3%)111Ag7/2+
β (0.7%)111Cd
112Ag4765111.9070485(26)3.130(8) hβ112Cd2(−)
113Ag4766112.906573(18)5.37(5) hβ113mCd1/2−
113mAg43.50(10) keV68.7(16) sIT (64%)113Ag7/2+
β (36%)113Cd
114Ag4767113.908823(5)4.6(1) sβ114Cd1+
114mAg198.9(10) keV1.50(5) msIT114Ag(6+)
115Ag4768114.908767(20)20.0(5) minβ115mCd1/2−
115mAg41.16(10) keV18.0(7) sβ (79.0%)115Cd7/2+
IT (21.0%)115Ag
116Ag4769115.911387(4)3.83(8) minβ116Cd(0−)
116m1Ag47.90(10) keV20(1) sβ (93%)116Cd(3+)
IT (7%)116Ag
116m2Ag129.80(22) keV9.3(3) sβ (92%)116Cd(6−)
IT (8%)116Ag
117Ag4770116.911774(15)73.6(14) sβ117mCd1/2−#
117mAg28.6(2) keV5.34(5) sβ (94.0%)117mCd7/2+#
IT (6.0%)117Ag
118Ag4771117.9145955(27)3.76(15) sβ118Cd(2−)
118m1Ag45.79(9) keV~0.1 μsIT118Ag(1,2)−
118m2Ag127.63(10) keV2.0(2) sβ (59%)118Cd(5+)
IT (41%)118Ag
118m3Ag279.37(20) keV~0.1 μsIT118Ag(3+)
119Ag4772118.915570(16)2.1(1) sβ119Cd(7/2+)
119mAg33.5(3) keV [7] 6.0(5) sβ119Cd(1/2−)
120Ag4773119.918785(5)1.52(7) sβ120Cd4(+)
β, n (<.003%)119Cd
120m1Ag [n 9] 0(50)# keV940(100) msβ?120Cd(0−, 1−)
IT?120Ag
β, n?119Cd
120m2Ag203.2(2) keV384(22) msIT (68%)120Sn7(−)
β (32%)120Cd
β, n?119Cd
121Ag4774120.920125(13)777(10) msβ (99.92%)121Cd7/2+#
β, n (0.080%)120Cd
122Ag [8] 4775121.9235420(56)550(50) msβ122Cd(1−)
β, n?121Cd
122m1Ag [8] 303.7(50) keV200(50) msβ122Cd(9−)
β, n?121Cd
IT?122Ag
122m2Ag171(50)# keV6.3(1) μsIT122Ag(1+)
123Ag4776122.92532(4)294(5) msβ (99.44%)123Cd(7/2+)
β, n (0.56%)122Cd
123m1Ag59.5(5) keV100# msβ123Cd(1/2−)
β, n?122Cd
123m2Ag1450(14)# keV202(20) nsIT123Ag
123m3Ag1472.8(8) keV393(16) nsIT123Ag(17/2−)
124Ag4777123.92890(27)#177.9(26) msβ (98.7%)124Cd(2−)
β, n (1.3%)123Cd
124m1Ag [n 9] 50(50)# keV144(20) msβ124Cd9−#
β, n?123Cd
124m2Ag155.6(5) keV140(50) nsIT124Ag(1+)
124m3Ag231.1(7) keV1.48(15) μsIT124Ag(1−)
125Ag4778124.93074(47)160(5) msβ (88.2%)125Cd(9/2+)
β, n (11.8%)124Cd
125m1Ag97.1(5) keV50# msβ?125Cd(1/2−)
IT?125Ag
β, n?124Cd
125m2Ag1501.2(6) keV491(20) nsIT125Ag(17/2−)
126Ag4779125.93481(22)#52(10) msβ (86.3%)126Cd3+#
β, n (13.7%)125Cd
126m1Ag100(100)# keV108.4(24) msβ126Cd9−#
IT?126Ag
β, n?125Cd
126m2Ag254.8(5) keV27(6) μsIT126Ag1−#
127Ag4780126.93704(22)#89(2) msβ (85.4%)127Cd(9/2+)
β, n (14.6%)126Cd
127mAg1938(17) keV67.5(9) msβ (91.2%)127Cd(27/2+)
IT (8.8%)127Ag
128Ag4781127.94127(32)#60(3) msβ (80%)128Cd3+#
β, n (20%)127Cd
β, 2n?126Cd
129Ag4782128.94432(43)#49.9(35) msβ (>80%)129Cd9/2+#
β, n (<20%)128Cd
130Ag4783129.95073(46)#40.6(45) msβ130Cd1−#
β, n?129Cd
β, 2n?128Cd
131Ag4784130.95625(54)#35(8) msβ (90%)131Cd9/2+#
β, 2n (10%)129Cd
β, n?130Cd
132Ag4785131.96307(54)#30(14) msβ132Cd6−#
β, n?131Cd
β, 2n?130Cd
This table header & footer:
  1. mAg  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold italics symbol as daughter  Daughter product is nearly stable.
  7. Bold symbol as daughter  Daughter product is stable.
  8. () spin value  Indicates spin with weak assignment arguments.
  9. 1 2 3 Order of ground state and isomer is uncertain.
  10. Used to date certain events in the early history of the Solar System
  11. 1 2 3 Fission product

See also

Daughter products other than silver

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Silver". CIAAW. 1985.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. "(Ag) Silver NMR".
  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. 1 2 Blachot, Jean (October 2000). "Nuclear Data Sheets for A = 108" . Nuclear Data Sheets. 91 (2): 135–296. doi:10.1006/ndsh.2000.0017.
  7. Kurpeta, J.; Abramuk, A.; Rząca-Urban, T.; Urban, W.; Canete, L.; Eronen, T.; Geldhof, S.; Gierlik, M.; Greene, J. P.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Nesterenko, D. A.; Penttilä, H.; Pohjalainen, I.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Simpson, G. S.; Smith, A. G.; Vilén, M. (14 March 2022). "β - and γ -spectroscopy study of Pd 119 and Ag 119". Physical Review C. 105 (3). doi:10.1103/PhysRevC.105.034316.
  8. 1 2 Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv: 2403.04710 .