Isotopes of astatine

Last updated

Isotopes of astatine  (85At)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
207At synth 1.81 h β+ 90% 207Po
α 10% 203Bi
208Atsynth1.63 hβ+99.5% 208Po
α0.55% 204Bi
209Atsynth5.41 hβ+96.1% 209Po
α3.9% 205Bi
210Atsynth8.1 hβ+99.8% 210Po
α0.175% 206Bi
211Atsynth7.214 h ε 58.2% 211Po
α41.8% 207Bi

Astatine (85At) has 41 known isotopes, all of which are radioactive; their mass numbers range from 188 to 229 (though 189At is undiscovered). There are also 24 known metastable excited states. The longest-lived isotope is 210At, which has a half-life of 8.1 hours; the longest-lived isotope existing in naturally occurring decay chains is 219At with a half-life of 56 seconds.

Contents

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [2]
[n 2] [n 3]
Half-life [1]
Decay
mode
[1]
[n 4]
Daughter
isotope

[n 5]
Spin and
parity [1]
[n 6] [n 7]
Isotopic
abundance
Excitation energy [n 7]
188At [3] 85103190+350
−80
 μs
α (~50%)184Bi
p (~50%)187Po
190At [4] 851051.0+1.4
−0.4
 ms
α186Bi(10−)
191At85106191.004148(17)2.1(8) msα187Bi1/2+
191mAt58(20) keV2.2(4) msα187Bi(7/2−)
192At85107192.003141(3)11.5(6) msα188Bi3+#
192mAt [n 8] 0(40) keV88(6) msα188mBi(9−, 10−)
193At85108192.999928(23)29(5) msα189Bi1/2+
193m1At [n 8] 8(9) keV21(5) msα189m1Bi7/2−
193m2At42(9) keV28(4) msIT (76%)193At13/2+
α (24%)189m2Bi
194At85109193.999231(25)286(7) msα (91.7%#)190Bi(5−)
β+ (8.3%#)194Po
β+, SF (0.032%#)(various)
194mAt [n 8] −20(40) keV323(7) msα (91.7%#)190Bi10−
β+ (8.3%#)194Po
β+, SF (0.032%#)(various)
195At85110194.996274(10)290(20) msα191mBi1/2+
β+ ?195Po
195mAt29(7) keV143(3) msα (88%)191Bi7/2-
IT (12%)195At
β+?195Po
196At85111195.99580(3)377(4) msα (97.5%)192Bi(3+)
β+ (2.5%)196Po
β+, SF (0.009%)(various)
196m1At [n 8] −40(40) keV20# msα192mBi10−#
196m2At157.9(1) keV11(2) μsIT196At(5+)
197At85112196.993177(9)388.2(56) msα (96.1%)193Bi9/2−
β+ (3.9%)197Po
197m1At45(8) keV2.0(2) sα193m1Bi1/2+
IT (<0.004%)197At
β+?197Po
197m2At310.7(2) keV1.3(2) μsIT197At13/2+
198At85113197.992798(5)4.47(5) sα (97%)194Bi3+
β+ (3%)198Po
198mAt266.6(27) keV1.23(5) sα (93%)10−
β+ ?198Po
IT ?198Po
199At85114198.990528(6)7.02(12) sα (89%)195Bi9/2−
β+ (11%)199Po
199m1At244.0(10) keV273(9) msIT (99%)1/2+
α (1%)195Bi
199m2At572.9(1) keV70(20) nsIT13/2+
199m3At2293.4(5) keV800(50) nsIT(29/2+)
200At85115199.990351(26)43.2(9) sα (52%)196Bi(3+)
β+ (48%)200Po
200m1At112.9(29) keV47(1) sβ+ (57%)200Po(7+)
α (43%)196Bi
IT ?200At
200m2At343.8(30) keV8.0(21) sIT ?200At(10−)
α (10.5%)196Bi
β+ ?200Po
201At85116200.988417(9)85.2(16) sα (71%)197Bi9/2−
β+ (29%)201Po
201m1At459(1) keV45(3) msIT1/2+
201m2At459(1) keV3.39(9) μsIT29/2+
202At85117201.988626(30)184(1) sβ+ (88%)202Po3+
α (12%)198Bi
202m1At190(40) keV182(2) sβ+ (91.5%)202Po7+
α (8.5%)198Bi
IT ?202At
202m2At590(40) keV460(50) msIT (99.904%)202At10−
α (0.096%)198Bi
IT ?202At
203At85118202.986943(11)7.4(2) minβ+ (69%)203Po9/2−
α (31%)199Bi
203m1At683.4(3) keV3.5(6) msIT1/2+
203m2At2330.1(4) keV9.77(21) μsIT29/2+
204At85119203.987251(24)9.12(11) minβ+ (96.2%)204Po7+
α (3.8%)200Bi
204mAt587.30(20) keV108(10) msIT204At10−
205At85120204.986061(13)26.9(8) minβ+ (90%)205Po9/2−
α (10%)201Bi
205mAt2339.64(23) keV7.76(14) μsIT205At29/2+
206At85121205.986646(15)30.6(8) minβ+ (99.1%)206Po(6)+
α (0.9%)202Bi
206mAt810(2) keV813(21) nsIT206At(10)−
207At85122206.985800(13)1.81(3) hβ+ (~90%)207Po9/2−
α (~10%)203Bi
207mAt2117.3(6) keV108(2) nsIT207At25/2+
208At85123207.986613(10)1.63(3) hβ+ (99.45%)208Po6+
α (0.55%)204Bi
208mAt2276.4(18) keV1.5(2) μsIT208At16-
209At85124208.986169(5)5.41(5) hβ+ (96.1%)209Po9/2−
α (3.9%)205Bi
209mAt2429.32(22) keV916(10) nsIT209At29/2+
210At85125209.987147(8)8.1(4) hβ+ (99.825%)210Po(5)+
α (0.175%)206Bi
210m1At2549.6(2) keV482(6) nsIT210At(15)−
210m2At4027.7(2) keV5.66(7) μsIT210At(19)+
211At85126210.9874962(29)7.214(7) h EC (58.2%)211Po9/2−
α (41.8%)207Bi
211mAt4814.5(5) keV4.23(7) μsIT211At(39/2-)
212At85127211.9907373(26)314(3) msα [n 9] 208Bi(1−)
212m1At222.9(9) keV119(3) msα208Bi(9−)
212m2At4771.4(15) keV152(5) μsIT212At(25−)
213At85128212.992937(5)125(6) nsα [n 10] 209Bi9/2−
213m1At1358(23) keV110(17) nsIT213At25/2-#
213m2At2998(27) keV45(4) μsIT213At49/2+#
214At85129213.996372(4)558(10) nsα210Bi1−
214m1At59(9) keV265(30) nsα210Bi
214m2At232(5) keV760(15) nsα210mBi [7] 9−
215At85130214.998651(7)37(3) μsα211Bi9/2−Trace [n 11]
216At85131216.002423(4)300(30) μsα [n 12] 212Bi1−
216mAt161(11) keV100# μsα212m1Bi [9] 9−#
217At85132217.004718(5)32.6(3) msα (99.992%)213Bi9/2−Trace [n 13]
β (0.008%)217Rn
218At85133218.008696(12)1.28(6) sα (~100%)214Bi(2−,3−)Trace [n 14]
β (?)218Rn
219At85134219.011161(3)56(3) sα (93.6%)215Bi(9/2−)Trace [n 11]
β (6.4%)219Rn
220At85135220.015433(15)3.71(4) minβ (92%)220Rn3(−#)
α (8%)216Bi
221At85136221.018017(15)2.3(2) minβ221Rn3/2−#
222At85137222.022494(17)54(10) sβ222Rn
223At85138223.025151(15)50(7) sβ223Rn3/2−#
224At85139224.029749(24)2.5 +/- 1.5 minβ224Rn2+#
225At85140225.03253(32)#3# s (>300 ns)β ?225Rn1/2+#
226At85141226.03721(32)#7# min (>300 ns)β ?226Rn2+#
227At85142227.04018(32)#5# s (>300 ns)β ?227Rn1/2+#
228At85143228.04496(43)#1# min (>300 ns)β ?228Rn3+#
229At85144229.04819(43)#1# s (>300 ns)β ?229Rn1/2+#
This table header & footer:
  1. mAt  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
  5. Bold italics symbol as daughter  Daughter product is nearly stable.
  6. () spin value  Indicates spin with weak assignment arguments.
  7. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  8. 1 2 3 4 Order of ground state and isomer is uncertain.
  9. Theoretically capable of β+ decay to 212Po or β decay to 212Rn; the branching ratios are expected to be <3×10−2% and <2×10−6% (partial half-lives >17.4 min and >182 d) respectively. [5]
  10. Theoretically capable of electron capture to 213Po; the branching ratio is expected to be <2.5×10−12% (partial half-life >57.9 d). [6]
  11. 1 2 Intermediate decay product of 235U
  12. Theoretically capable of electron capture to 216Po or β decay to 216Rn; the branching ratios are expected to be <3×10−7% and <6×10−3% (partial half-lives >1.2 d and >5.0 s) respectively. [8]
  13. Intermediate decay product of 237Np
  14. Intermediate decay product of 238U

Alpha decay

Alpha decay characteristics for sample astatine isotopes [a]
Mass
number
Mass
excess
[10]
Mass
excess of
daughter [10]
Average
energy of
alpha
decay
Half-life [10] Probability
of alpha
decay [10]
Alpha
decay
half-life
207−13.243 MeV−19.116 MeV5.873 MeV1.80 h8.6%20.9 h
208−12.491 MeV−18.243 MeV5.752 MeV1.63 h0.55%12.3 d
209−12.880 MeV−18.638 MeV5.758 MeV5.41 h4.1%5.5 d
210−11.972 MeV−17.604 MeV5.632 MeV8.1 h0.175%193 d
211−11.647 MeV−17.630 MeV5.983 MeV7.21 h41.8%17.2 h
212−8.621 MeV−16.436 MeV7.825 MeV0.31 s0.31 s
213−6.579 MeV−15.834 MeV9.255 MeV125 ns100%125 ns
214−3.380 MeV−12.366 MeV8.986 MeV558 ns100%558 ns
21910.397 MeV4.073 MeV6.324 MeV56 s97%58 s
22014.350 MeV8.298 MeV6.052 MeV3.71 min8%46.4 min
221 [b] 16.810 MeV11.244 MeV5.566 MeV2.3 min

Astatine has 23 nuclear isomers (nuclei with one or more nucleons  protons or neutrons  – in an excited state). A nuclear isomer may also be called a "meta-state"; this means the system has more internal energy than the "ground state" (the state with the lowest possible internal energy), making the former likely to decay into the latter. There may be more than one isomer for each isotope. The most stable of them is astatine-202m1, [c] which has a half-life of about 3 minutes; this is longer than those of all ground states except those of isotopes 203–211 and 220. The least stable one is astatine-214m1; its half-life of 265 ns is shorter than those of all ground states except that of astatine-213. [10]

Alpha decay energy follows the same trend as for other heavy elements. [11] Lighter astatine isotopes have quite high energies of alpha decay, which become lower as the nuclei become heavier. However, astatine-211 has a significantly higher energy than the previous isotope; it has a nucleus with 126 neutrons, and 126 is a magic number (corresponding to a filled neutron shell). Despite having a similar half-life time as the previous isotope (8.1 hours for astatine-210 and 7.2 hours for astatine-211), the alpha decay probability is much higher for the latter: 41.8 percent versus just 0.18 percent. [10] [d] The two following isotopes release even more energy, with astatine-213 releasing the highest amount of energy of all astatine isotopes. For this reason, it is the shortest-lived astatine isotope. [11] Even though heavier astatine isotopes release less energy, no long-lived astatine isotope exists; this happens due to the increasing role of beta decay. [11] This decay mode is especially important for astatine: as early as 1950, it was postulated that the element has no beta-stable isotopes (i.e. ones that do not undergo beta decay at all), [12] though nuclear mass measurements reveal that 215At is in fact beta-stable, as it has the lowest mass of all isobars with A = 215. [13] A beta decay mode has been found for all other astatine isotopes except for 212-216At and their isomers. [10] [1] Among other isotopes: astatine-210 and the lighter isotopes decay by positron emission; astatine-217 and the heavier isotopes undergo beta decay; and astatine-211 decays by electron capture instead. [10] Astatine-212 and astatine-216 are expected to decay either way.

The most stable isotope of astatine is astatine-210, which has a half-life of about 8.1 hours. This isotope's primary decay mode is positron emission to the relatively long-lived alpha emitter, polonium-210. In total, only five isotopes of astatine have half-lives exceeding one hour: those between 207 and 211. The least stable ground state isotope is astatine-213, with a half-life of about 125 nanoseconds. It undergoes alpha decay to the extremely long-lived (in practice, stable) isotope bismuth-209. [10]

See also

Daughter products other than astatine

Notes

  1. In the table, under the words "mass excess", the energy equivalents are given rather than the real mass excesses; "mass excess daughter" stands for the energy equivalent of the mass excess sum of the daughter of the isotope and the alpha particle; "alpha decay half-life" refers to the half-life if decay modes other than alpha are omitted.
  2. Since astatine-221 has not been shown to undergo alpha decay, the alpha decay energy is theoretical. The value for mass excess is calculated rather than measured.
  3. "m1" means that this state of the isotope is the next possible one above – energy greater than – the ground state. "m2" and similar designations refer to further higher energy states. The number may be dropped if there is only one well-established meta state, such as astatine-216m. Note that other designation techniques exist.
  4. This means that if decay modes other than alpha are omitted, then astatine-210 has an alpha half-life of 4,628.6 hours (128.9 days) and astatine-211 has one of 17.2 hours (0.9 days). Therefore, astatine-211 is less stable toward alpha decay than the lighter isotope, and is more likely to undergo alpha decay in the same time period.

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  3. Kokkonen, Henna; Auranen, Kalle; Siwach, Pooja; Arumugam, Paramasivan; Briscoe, Andrew D.; Eeckhaudt, Sarah; Ferreira, Lidia S.; Grahn, Tuomas; Greenlees, Paul T.; Jones, Pete; Julin, Rauno; Juutinen, Sakari; Leino, Matti; Leppänen, Ari-Pekka; Maglione, Enrico; Nyman, Markus; Page, Robert D.; Pakarinen, Janne; Rahkila, Panu; Sarén, Jan; Scholey, Catherine; Sorri, Juha; Uusitalo, Juha; Venhart, Martin (29 May 2025). "New proton emitter 188At implies an interaction unprecedented in heavy nuclei". Nature Communications. 16 (1). doi:10.1038/s41467-025-60259-6.
  4. Kokkonen, H.; Auranen, K.; Uusitalo, J.; Eeckhaudt, S.; Grahn, T.; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Leino, M.; Leppänen, A.-P.; Nyman, M.; Pakarinen, J.; Rahkila, P.; Sarén, J.; Scholey, C.; Sorri, J.; Venhart, M. (20 June 2023). "Properties of the new α -decaying isotope At 190". Physical Review C. 107 (6). doi:10.1103/PhysRevC.107.064312.
  5. "Adopted Levels for 212At" (PDF). NNDC Chart of Nuclides.
  6. "Adopted Levels for 213At" (PDF). NNDC Chart of Nuclides.
  7. "214At α decay (760 ns)" (PDF). NNDC Chart of Nuclides.
  8. "Adopted Levels for 216At" (PDF). NNDC Chart of Nuclides.
  9. "216At α decay: J=9" (PDF). NNDC Chart of Nuclides.
  10. 1 2 3 4 5 6 7 8 9 Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  11. 1 2 3 Lavrukhina & Pozdnyakov 1966, p. 232.
  12. Rankama, Kalervo (1956). Isotope geology (2nd ed.). Pergamon Press. p. 403. ISBN   978-0-470-70800-2.{{cite book}}: ISBN / Date incompatibility (help)
  13. Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.