Isotopes of cerium

Last updated

Isotopes of cerium  (58Ce)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
134Ce synth 3.16 d ε 134La
136Ce0.186% stable
138Ce0.251%stable
139Cesynth137.640 dε 139La
140Ce88.4%stable
141Cesynth32.501 d β 141Pr
142Ce11.1%stable
143Cesynth33.039 hβ 143Pr
144Cesynth284.893 dβ 144Pr
Standard atomic weight Ar°(Ce)

Naturally occurring cerium (58Ce) is composed of 4 stable isotopes: 136Ce, 138Ce, 140Ce, and 142Ce, with 140Ce being the most abundant (88.48% natural abundance) and the only one theoretically stable; 136Ce, 138Ce, and 142Ce are predicted to undergo double beta decay but this process has never been observed. There are 35 radioisotopes that have been characterized, with the most stable being 144Ce, with a half-life of 284.893 days; 139Ce, with a half-life of 137.640 days and 141Ce, with a half-life of 32.501 days. All of the remaining radioactive isotopes have half-lives that are less than 4 days and the majority of these have half-lives that are less than 10 minutes. This element also has 10 meta states.

The isotopes of cerium range in atomic weight from 119 u (119Ce) to 157 u (157Ce).

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [4]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity [1]
[n 7] [n 4]
Natural abundance (mole fraction)
Excitation energyNormal proportion [1] Range of variation
121Ce5863120.94344(43)#1.1(1) s β+ (99%)121La5/2(+#)
β+, p (1%)120Ba
122Ce5864121.93787(43)#2# sβ+122La0+
123Ce5865122.93528(32)#3.8(2) sβ+ (?%)123La(5/2)(+#)
β+, p (?%)122Ba
124Ce5866123.93031(32)#9.1(12) sβ+124La0+
125Ce5867124.92844(21)#9.7(3) sβ+ (?%)125La(7/2−)
β+, p (?%)124Ba
125mCe93.6(4) keV13(10) s IT 125Ce(1/2+)
126Ce5868125.923971(30)51.0(3) sβ+126La0+
127Ce5869126.922727(31)34(2) sβ+127La(1/2+)
127m1Ce7.3(11) keV28.6(7) sβ+127La(5/2+)
127m2Ce36.9(11) keV>10 μsIT127Ce(7/2−)
128Ce5870127.918911(30)3.93(2) minβ+128La0+
129Ce5871128.918102(30)3.5(3) minβ+129La(5/2+)
130Ce5872129.914736(30)22.9(5) minβ+130La0+
130mCe2453.6(3) keV100(8) nsIT130Ce7−
131Ce5873130.914429(35)10.3(3) minβ+131La7/2+
131mCe63.09(9) keV5.4(4) minβ+131La(1/2+)
132Ce5874131.911466(22)3.51(11) hβ+132La0+
132mCe2341.15(21) keV9.4(3) msIT132Ce8−
133Ce5875132.911520(18)97(4) minβ+133La1/2+
133mCe37.2(7) keV5.1(3) hβ+133La9/2−
134Ce5876133.908928(22)3.16(4) d EC 134La0+
134mCe3208.6(4) keV308(5) nsIT134Ce10+
135Ce5877134.909161(11)17.7(3) hβ+135La1/2+
135mCe445.81(21) keV20(1) sIT135Ce(11/2−)
136Ce5878135.90712926(35) Observationally Stable [n 8] 0+0.00186(2)
136mCe3095.0(6) keV1.96(9) μsIT136Ce10+
137Ce5879136.90776242(39)9.0(3) hβ+137La3/2+
137mCe254.29(5) keV34.4(3) hIT (99.21%)137Ce11/2−
β+ (0.79%)137La
138Ce5880137.90599418(54)Observationally Stable [n 9] 0+0.00251(2)
138mCe2129.28(12) keV8.73(20) msIT138Ce7-
139Ce5881138.9066470(22)137.642(20) dEC139La3/2+
139mCe754.24(8) keV57.58(32) sIT139Ce11/2−
140Ce [n 10] 5882139.9054484(14)Stable0+0.88449(51)
140mCe2107.854(24) keV7.3(15) μsIT140Ce6+
141Ce [n 10] 5883140.9082860(14)32.505(10) dβ141Pr7/2−
142Ce [n 10] 5884141.9092502(26)Observationally Stable [n 11] [5] 0+0.11114(51)
143Ce [n 10] 5885142.9123920(26)33.039(6) hβ143Pr3/2−
144Ce [n 10] 5886143.9136528(30)284.886(25) dβ144Pr0+
145Ce5887144.917265(36)3.01(6) minβ145Pr5/2−#
146Ce5888145.918812(16)13.49(16) minβ146Pr0+
147Ce5889146.9226899(92)56.4(10) sβ147Pr(5/2−)
148Ce5890147.924424(12)56.8(3) sβ148Pr0+
149Ce5891148.928427(11)4.94(4) sβ149Pr3/2−#
150Ce5892149.930384(13)6.05(7) sβ150Pr0+
151Ce5893150.934272(19)1.76(6) sβ151Pr(3/2−)
152Ce5894151.93668(22)#1.42(2) sβ152Pr0+
153Ce5895152.94105(22)#865(25) msβ153Pr3/2−#
154Ce5896153.94394(22)#722(14) msβ154Pr0+
155Ce5897154.94871(32)#313(7) msβ155Pr5/2−#
156Ce5898155.95188(32)#233(9) msβ156Pr0+
157Ce5899156.95713(43)#175(41) msβ157Pr7/2+#
158Ce58100157.96077(43)#99(93) msβ158Pr0+
This table header & footer:
  1. mCe  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    p: Proton emission
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. Theorized to undergo β+β+ decay to 136Ba with a half-life over 3.2×1016 years
  9. Theorized to undergo β+β+ decay to 138Ba with a half-life over 4.4×1016 years
  10. 1 2 3 4 5 Fission product
  11. Theorized to undergo ββ decay to 142Nd or α decay to 138Ba with a half-life over 2.9×1018 years

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Cerium". CIAAW. 1995.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. Belli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A . 55 (140): 4–6. arXiv: 1908.11458 . Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. S2CID   254103706.