Aluminium-26

Last updated
Aluminium-26, 26Al
General
Symbol 26Al
Names aluminium-26, 26Al, Al-26
Protons (Z)13
Neutrons (N)13
Nuclide data
Natural abundance trace (cosmogenic)
Half-life (t1/2)7.17×105 years
Spin 5+
Decay modes
Decay mode Decay energy (MeV)
β+4.00414
ε4.00414
Isotopes of aluminium
Complete table of nuclides

Aluminium-26 (26Al, Al-26) is a radioactive isotope of the chemical element aluminium, decaying by either positron emission or electron capture to stable magnesium-26. The half-life of 26Al is 717,000 years. This is far too short for the isotope to survive as a primordial nuclide, but a small amount of it is produced by collisions of atoms with cosmic ray protons. [1]

Contents

Decay of aluminium-26 also produces gamma rays and x-rays. [2] The x-rays and Auger electrons are emitted by the excited atomic shell of the daughter 26Mg after the electron capture which typically leaves a hole in one of the lower sub-shells.

Because it is radioactive, it is typically stored behind at least 5 centimetres (2 in) of lead. Contact with 26Al may result in radiological contamination. This necessitates special tools for transfer, use, and storage. [3]

Dating

Aluminium-26 can be used to calculate the terrestrial age of meteorites and comets. It is produced in significant quantities in extraterrestrial objects via spallation of silicon alongside beryllium-10, though after falling to Earth, 26Al production ceases and its abundance relative to other cosmogenic nuclides decreases. Absence of aluminium-26 sources on Earth is a consequence of Earth's atmosphere obstructing silicon on the surface and low troposphere from interaction with cosmic rays. Consequently, the amount of 26Al in the sample can be used to calculate the date the meteorite fell to Earth. [1]

Occurrence in the interstellar medium

The distribution of Al in Milky Way COMPTEL 26Al galaxy.jpg
The distribution of Al in Milky Way

The gamma ray emission from the decay of Al-26 at 1809 keV was the first observed gamma emission from the Galactic Center. The observation was made by the HEAO-3 satellite in 1984. [4] [5]

26Al is mainly produced in supernovae ejecting many radioactive nuclides in the interstellar medium. The isotope is believed to be crucial for the evolution of planetary objects, providing enough heat to melt and differentiate accreting planetesimals. This is known to have happened during the early history of the asteroids 1 Ceres and 4 Vesta. [6] [7] [8] 26Al has been hypothesized to have played a role in the unusual shape of Saturn's moon Iapetus. Iapetus is noticeably flattened and oblate, indicating that it rotated significantly faster early in its history, with a rotation period possibly as short as 17 hours. Heating from 26Al could have provided enough heat in Iapetus to allow it to conform to this rapid rotation period, before the moon cooled and became too rigid to relax back into hydrostatic equilibrium. [9]

History

Metastable States

Before 1954, the half-life of aluminium-26m was measured to be 6.3 seconds. [10] After it was theorized that this could be the half-life of a metastable state (isomer) of aluminium-26, the ground state was produced by bombardment of magnesium-26 and magnesium-25 with deuterons in the cyclotron of the University of Pittsburgh. [11] The first half-life was determined to be in the range of 106 years. The Fermi beta decay half-life of the aluminium-26 metastable state is of interest in the experimental testing of two components of the Standard Model, namely, the conserved-vector-current hypothesis and the required unitarity of the Cabibbo–Kobayashi–Maskawa matrix. [12] The decay is superallowed. The 2011 measurement of the half life of 26mAl is 6346.54 ± 0.46(statistical) ± 0.60(system) milliseconds. [13]

In the Early Solar System

In considering the known melting of small planetary bodies in the early Solar System, H. C. Urey noted that the naturally occurring long-lived radioactive nuclei (40K, 238U, 235U and 232Th) were insufficient heat sources. He proposed that the heat sources from short lived nuclei from newly formed stars might be the source and identified 26Al as the most likely choice. [14] [15] This proposal was made well before the general problems of stellar nucleosynthesis of the nuclei were known or understood. This conjecture was based on the discovery of 26Al in a Mg target by Simanton, Rightmire, Long & Kohman. [11]

Their search was undertaken because hitherto there was no known radioactive isotope of Al that might be useful as a tracer. Theoretical considerations suggested that a state of 26Al should exist. The life time of 26Al was not then known; it was only estimated between 104 and 106 years. The search for 26Al took place over many years, long after the discovery of the extinct radionuclide 129I (by Reynolds (1960, Physical Review Letters v 4, p 8)) which showed that contribution from stellar sources formed ~108 years before the Sun had contributed[ how? ] to the Solar System mix. The asteroidal materials that provide meteorite samples were long known to be from the early Solar System. [16]

The Allende meteorite, which fell in 1969, contained abundant calcium–aluminium-rich inclusions (CAIs). These are very refractory materials and were interpreted as being condensates from a hot solar nebula. [17] [18] then discovered that the oxygen in these objects was enhanced in 16O by ~5% while the 17O/18O was the same as terrestrial. This clearly showed a large effect in an abundant element that might be nuclear, possibly from a stellar source. These objects were then found to contain strontium with very low 87Sr/86Sr indicating that they were a few million years older than previously analyzed meteoritic material and that this type of material would merit a search for 26Al. [19] 26Al is only present today in the Solar System materials as the result of cosmic reactions on unshielded materials at an extremely[ quantify ] low level. Thus, any original 26Al in the early Solar System is now extinct.

To establish the presence of 26Al in very ancient materials requires demonstrating that samples must contain clear excesses of 26Mg /24Mg which correlates with the ratio of 27Al/24Mg. The stable 27Al is then a surrogate for extinct 26Al. The different 27Al/24Mg ratios are coupled to different chemical phases in a sample and are the result of normal chemical separation processes associated with the growth of the crystals in the CAIs. Clear evidence of the presence of 26Al at an abundance ratio of 5×10−5 was shown by Lee, et al. [20] [21] The value (26Al/27Al ~ 5×10−5) has now been generally established as the high value in early Solar System samples and has been generally used as a refined time scale chronometer for the early Solar System. Lower values imply a more recent time of formation. If this 26Al is the result of pre-solar stellar sources, then this implies a close connection in time between the formation of the Solar System and the production in some exploding star. Many materials which had been presumed to be very early (e.g. chondrules) appear to have formed a few million years later (Hutcheon & Hutchison)[ citation needed ]. Other extinct radioactive nuclei, which clearly had a stellar origin, were then being discovered. [22]

That 26Al was present in the interstellar medium as a major gamma ray source was not explored until the development of the high-energy astronomical observatory program. The HEAO-3 spacecraft with cooled Ge detectors allowed the clear detection of 1.808 Mev gamma lines from the central part of the galaxy from a distributed of 26Al source. [4] This represents a quasi steady state inventory corresponding to two solar masses of 26Al was distributed [ clarification needed ]. This discovery was greatly expanded on by observations from the Compton Gamma Ray Observatory using the COMPTEL telescope in the galaxy. [23] Subsequently, the 60Fe lines (1.173 & 1.333 Mev) were also detected showing the relative rates of decays from 60Fe to 26Al to be 60Fe/26AL~0.11. [24]

In pursuit of the carriers of 22Ne in the sludge produced by chemical destruction of some meteorites, carrier grains in micron size, acid-resistant ultra-refractory materials (e.g. C, SiC) were found by E. Anders & the Chicago group. The carrier grains were clearly shown to be circumstellar condensates from earlier stars and often contained very large enhancements in 26Mg/24Mg from the decay of 26Al with 26Al/27Al sometimes approaching 0.2 [25] [26] These studies on micron scale grains were possible as a result of the development of surface ion mass spectrometry at high mass resolution with a focused beam developed by G. Slodzian & R.Castaing with the CAMECA Co.

The production of 26Al by cosmic ray interactions in unshielded materials is used as a monitor of the time of exposure to cosmic rays. The amounts are far below the initial inventory that is found in very early solar system debris.

See also

Related Research Articles

Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares the abundance of a naturally occurring radioactive isotope within the material to the abundance of its decay products, which form at a known constant rate of decay. The use of radiometric dating was first published in 1907 by Bertram Boltwood and is now the principal source of information about the absolute age of rocks and other geological features, including the age of fossilized life forms or the age of Earth itself, and can also be used to date a wide range of natural and man-made materials.

Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in a process called Big Bang nucleosynthesis. After about 20 minutes, the universe had expanded and cooled to a point at which these high-energy collisions among nucleons ended, so only the fastest and simplest reactions occurred, leaving our universe containing hydrogen and helium. The rest is traces of other elements such as lithium and the hydrogen isotope deuterium. Nucleosynthesis in stars and their explosions later produced the variety of elements and isotopes that we have today, in a process called cosmic chemical evolution. The amounts of total mass in elements heavier than hydrogen and helium remains small, so that the universe still has approximately the same composition.

<span class="mw-page-title-main">Age of Earth</span> Scientific dating of the age of Earth

The age of Earth is estimated to be 4.54 ± 0.05 billion years (4.54 × 109 years ± 1%). This age may represent the age of Earth's accretion, or core formation, or of the material from which Earth formed. This dating is based on evidence from radiometric age-dating of meteorite material and is consistent with the radiometric ages of the oldest-known terrestrial material and lunar samples.

<span class="mw-page-title-main">Radioactive decay</span> Emissions from unstable atomic nuclei

Radioactive decay is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the electromagnetism and nuclear force.

<span class="mw-page-title-main">Local Bubble</span> Cavity in the interstellar medium which contains the Local Interstellar Cloud

The Local Bubble, or Local Cavity, is a relative cavity in the interstellar medium (ISM) of the Orion Arm in the Milky Way. It contains the closest of celestial neighbours and among others, the Local Interstellar Cloud, the neighbouring G-Cloud, the Ursa Major moving group and the Hyades. It is estimated to be at least 1000 light years in size, and is defined by its neutral-hydrogen density of about 0.05 atoms/cm3, or approximately one tenth of the average for the ISM in the Milky Way (0.5 atoms/cm3), and one sixth that of the Local Interstellar Cloud (0.3 atoms/cm3).

<span class="mw-page-title-main">Beryllium-10</span> Isotope of beryllium

Beryllium-10 (10Be) is a radioactive isotope of beryllium. It is formed in the Earth's atmosphere mainly by cosmic ray spallation of nitrogen and oxygen. Beryllium-10 has a half-life of 1.39 × 106 years, and decays by beta decay to stable boron-10 with a maximum energy of 556.2 keV. It decays through the reaction 10Be→10B + e. Light elements in the atmosphere react with high energy galactic cosmic ray particles. The spallation of the reaction products is the source of 10Be (t, u particles like n or p):

<span class="mw-page-title-main">Cosmic dust</span> Dust floating in space

Cosmic dust – also called extraterrestrial dust, space dust, or star dust – is dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 μm), such as micrometeoroids. Larger particles are called meteoroids. Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust, and circumplanetary dust. There are several methods to obtain space dust measurement.

Cosmic ray spallation, also known as the x-process, is a set of naturally occurring nuclear reactions causing nucleosynthesis; it refers to the formation of chemical elements from the impact of cosmic rays on an object. Cosmic rays are highly energetic charged particles from beyond Earth, ranging from protons, alpha particles, and nuclei of many heavier elements. About 1% of cosmic rays also consist of free electrons.

Naturally occurring iron (26Fe) consists of four stable isotopes: 5.845% of 54Fe (possibly radioactive with a half-life over 4.4×1020 years), 91.754% of 56Fe, 2.119% of 57Fe and 0.286% of 58Fe. There are 24 known radioactive isotopes, the most stable of which are 60Fe (half-life 2.6 million years) and 55Fe (half-life 2.7 years).

Naturally occurring chromium (24Cr) is composed of four stable isotopes; 50Cr, 52Cr, 53Cr, and 54Cr with 52Cr being the most abundant (83.789% natural abundance). 50Cr is suspected of decaying by β+β+ to 50Ti with a half-life of (more than) 1.8×1017 years. Twenty-two radioisotopes, all of which are entirely synthetic, have been characterized, the most stable being 51Cr with a half-life of 27.7 days. All of the remaining radioactive isotopes have half-lives that are less than 24 hours and the majority of these have half-lives that are less than 1 minute. This element also has two meta states, 45mCr, the more stable one, and 59mCr, the least stable isotope or isomer.

Aluminium or aluminum (13Al) has 22 known isotopes from 22Al to 43Al and 4 known isomers. Only 27Al (stable isotope) and 26Al (radioactive isotope, t1/2 = 7.2×105 y) occur naturally, however 27Al comprises nearly all natural aluminium. Other than 26Al, all radioisotopes have half-lives under 7 minutes, most under a second. The standard atomic weight is 26.9815385(7). 26Al is produced from argon in the atmosphere by spallation caused by cosmic-ray protons. Aluminium isotopes have found practical application in dating marine sediments, manganese nodules, glacial ice, quartz in rock exposures, and meteorites. The ratio of 26Al to 10Be has been used to study the role of sediment transport, deposition, and storage, as well as burial times, and erosion, on 105 to 106 year time scales. 26Al has also played a significant role in the study of meteorites.

Cosmogenic nuclides are rare nuclides (isotopes) created when a high-energy cosmic ray interacts with the nucleus of an in situ Solar System atom, causing nucleons to be expelled from the atom. These nuclides are produced within Earth materials such as rocks or soil, in Earth's atmosphere, and in extraterrestrial items such as meteoroids. By measuring cosmogenic nuclides, scientists are able to gain insight into a range of geological and astronomical processes. There are both radioactive and stable cosmogenic nuclides. Some of these radionuclides are tritium, carbon-14 and phosphorus-32.

<span class="mw-page-title-main">Nuclear astrophysics</span> Field of nuclear physics and astrophysics

Nuclear astrophysics is an interdisciplinary part of both nuclear physics and astrophysics, involving close collaboration among researchers in various subfields of each of these fields. This includes, notably, nuclear reactions and their rates as they occur in cosmic environments, and modeling of astrophysical objects where these nuclear reactions may occur, but also considerations of cosmic evolution of isotopic and elemental composition (often called chemical evolution). Constraints from observations involve multiple messengers, all across the electromagnetic spectrum (nuclear gamma-rays, X-rays, optical, and radio/sub-mm astronomy), as well as isotopic measurements of solar-system materials such as meteorites and their stardust inclusions, cosmic rays, material deposits on Earth and Moon). Nuclear physics experiments address stability (i.e., lifetimes and masses) for atomic nuclei well beyond the regime of stable nuclides into the realm of radioactive/unstable nuclei, almost to the limits of bound nuclei (the drip lines), and under high density (up to neutron star matter) and high temperature (plasma temperatures up to 109 K). Theories and simulations are essential parts herein, as cosmic nuclear reaction environments cannot be realized, but at best partially approximated by experiments. In general terms, nuclear astrophysics aims to understand the origin of the chemical elements and isotopes, and the role of nuclear energy generation, in cosmic sources such as stars, supernovae, novae, and violent binary-star interactions.

Iodine-129 (129I) is a long-lived radioisotope of iodine that occurs naturally but is also of special interest in the monitoring and effects of man-made nuclear fission products, where it serves as both a tracer and a potential radiological contaminant.

Lead–lead dating is a method for dating geological samples, normally based on 'whole-rock' samples of material such as granite. For most dating requirements it has been superseded by uranium–lead dating, but in certain specialized situations it is more important than U–Pb dating.

An extinct radionuclide is a radionuclide that was formed by nucleosynthesis before the formation of the Solar System, about 4.6 billion years ago, but has since decayed to virtually zero abundance and is no longer detectable as a primordial nuclide. Extinct radionuclides were generated by various processes in the early Solar system, and became part of the composition of meteorites and protoplanets. All widely documented extinct radionuclides have half-lives shorter than 100 million years.

<span class="mw-page-title-main">Extraterrestrial materials</span> Natural objects that originated in outer space

Extraterrestrial material refers to natural objects now on Earth that originated in outer space. Such materials include cosmic dust and meteorites, as well as samples brought to Earth by sample return missions from the Moon, asteroids and comets, as well as solar wind particles.

Surface exposure dating is a collection of geochronological techniques for estimating the length of time that a rock has been exposed at or near Earth's surface. Surface exposure dating is used to date glacial advances and retreats, erosion history, lava flows, meteorite impacts, rock slides, fault scarps, cave development, and other geological events. It is most useful for rocks which have been exposed for between 103 and 106 years.

<span class="mw-page-title-main">Radiogenic nuclide</span>

A radiogenic nuclide is a nuclide that is produced by a process of radioactive decay. It may itself be radioactive or stable.

Hafnium–tungsten dating is a geochronological radiometric dating method utilizing the radioactive decay system of hafnium-182 to tungsten-182. The half-life of the system is 8.9±0.1 million years. Today hafnium-182 is an extinct radionuclide, but the hafnium–tungsten radioactive system is useful in studies of the early Solar system since hafnium is lithophilic while tungsten is moderately siderophilic, which allows the system to be used to date the differentiation of a planet's core. It is also useful in determining the formation times of the parent bodies of iron meteorites.

References

  1. 1 2 Overholt, A.C.; Melott, A.L. (2013). "Cosmogenic nuclide enhancement via deposition from long-period comets as a test of the Younger Dryas impact hypothesis". Earth and Planetary Science Letters . 377–378: 55–61. arXiv: 1307.6557 . Bibcode:2013E&PSL.377...55O. doi:10.1016/j.epsl.2013.07.029. S2CID   119291750.
  2. "Nuclide Safety Data Sheet Aluminum-26" (PDF). www.nchps.org.
  3. "Nuclide Safety Data Sheet Aluminum-26" (PDF). National Health& Physics Society. Retrieved 2009-04-13.
  4. 1 2 Mahoney, W. A.; Ling, J. C.; Wheaton, W. A.; Jacobson, A. S. (1984). "HEAO 3 discovery of Al-26 in the interstellar medium". The Astrophysical Journal. 286: 578. Bibcode:1984ApJ...286..578M. doi:10.1086/162632.
  5. Kohman, T. P. (1997). "Aluminum-26: A nuclide for all seasons". Journal of Radioanalytical and Nuclear Chemistry. 219 (2): 165–176. doi:10.1007/BF02038496. S2CID   96683475.
  6. Moskovitz, Nicholas; Gaidos, Eric (2011). "Differentiation of planetesimals and the thermal consequences of melt migration". Meteoritics & Planetary Science. 46 (6): 903–918. arXiv: 1101.4165 . Bibcode:2011M&PS...46..903M. doi:10.1111/j.1945-5100.2011.01201.x. S2CID   45803132.
  7. Zolotov, M. Yu. (2009). "On the Composition and Differentiation of Ceres". Icarus . 204 (1): 183–193. Bibcode:2009Icar..204..183Z. doi:10.1016/j.icarus.2009.06.011.
  8. Zuber, Maria T.; McSween, Harry Y.; Binzel, Richard P.; Elkins-Tanton, Linda T.; Konopliv, Alexander S.; Pieters, Carle M.; Smith, David E. (2011). "Origin, Internal Structure and Evolution of 4 Vesta". Space Science Reviews. 163 (1–4): 77–93. Bibcode:2011SSRv..163...77Z. doi:10.1007/s11214-011-9806-8. S2CID   7658841.
  9. Kerr, Richard A. (2006-01-06). "How Saturn's Icy Moons Get a (Geologic) Life". Science. 311 (5757): 29. doi: 10.1126/science.311.5757.29 . PMID   16400121. S2CID   28074320.
  10. Hollander, J. M.; Perlman, I.; Seaborg, G. T. (1953). "Table of Isotopes". Reviews of Modern Physics. 25 (2): 469–651. Bibcode:1953RvMP...25..469H. doi:10.1103/RevModPhys.25.469.
  11. 1 2 Simanton, James R.; Rightmire, Robert A.; Long, Alton L.; Kohman, Truman P. (1954). "Long-Lived Radioactive Aluminum 26". Physical Review. 96 (6): 1711–1712. Bibcode:1954PhRv...96.1711S. doi:10.1103/PhysRev.96.1711.
  12. Scott, Rebecca J; o'Keefe, Graeme J; Thompson, Maxwell N; Rassool, Roger P (2011). "Precise measurement of the half-life of the Fermi β-decay of 26Al(m)". Physical Review C. 84 (2): 024611. Bibcode:2011PhRvC..84b4611S. doi:10.1103/PhysRevC.84.024611.
  13. Finlay, P; Ettenauer, S; Ball, G. C; Leslie, J. R; Svensson, C. E; Andreoiu, C; Austin, R. A. E; Bandyopadhyay, D; Cross, D. S; Demand, G; Djongolov, M; Garrett, P. E; Green, K. L; Grinyer, G. F; Hackman, G; Leach, K. G; Pearson, C. J; Phillips, A. A; Sumithrarachchi, C. S; Triambak, S; Williams, S. J (2011). "High-Precision Half-Life Measurement for the Superallowed β+ Emitter 26Al(m)". Physical Review Letters. 106 (3): 032501. doi:10.1103/PhysRevLett.106.032501. PMID   21405268.
  14. Urey, H.C. (1955). "The Cosmic Abundances of Potassium, Uranium, and Thorium and the Heat Balances of the Earth, the Moon, and Mars". PNAS. 41 (3): 127–144. Bibcode:1955PNAS...41..127U. doi: 10.1073/pnas.41.3.127 . PMC   528039 . PMID   16589631.
  15. Urey, H.C. (1956). "The Cosmic Abundances of Potassium, Uranium, and Thorium and the Heat Balances of the Earth, the Moon, and Mars". PNAS. 42 (12): 889–891. Bibcode:1956PNAS...42..889U. doi: 10.1073/pnas.42.12.889 . PMC   528364 . PMID   16589968.
  16. Black, D.C.; Pepin, R.O. (11 July 1969). "Trapped neon in meteorites — II". Earth and Planetary Science Letters . 6 (5): 395. Bibcode:1969E&PSL...6..395B. doi:10.1016/0012-821X(69)90190-3.
  17. Grossman, L. (June 1972). "Condensation in the primitive solar nebula". Geochimica et Cosmochimica Acta . 36 (5): 597. Bibcode:1972GeCoA..36..597G. doi:10.1016/0016-7037(72)90078-6.
  18. Clayton, Robert N.; Grossman, L.; Mayeda, Toshiko K. (2 November 1973). "A component of primitive nuclear composition in carbonaceous meteorites". Science . 182 (4111): 485–8. Bibcode:1973Sci...182..485C. doi:10.1126/science.182.4111.485. PMID   17832468. S2CID   22386977.
  19. Gray (1973). "The identification of early condensates from the solar nebula". Icarus . 20 (2): 213. Bibcode:1973Icar...20..213G. doi:10.1016/0019-1035(73)90052-3.
  20. Lee, Typhoon; Papanastassiou, D. A; Wasserburg, G. J (1976). "Demonstration of 26 Mg excess in Allende and evidence for 26 Al". Geophysical Research Letters . 3 (1): 41. Bibcode:1976GeoRL...3...41L. doi:10.1029/GL003i001p00041.
  21. Lee, T.; Papanastassiou, D. A.; Wasserburg, G. J. (1977). "Aluminum-26 in the early solar system - Fossil or fuel". Astrophysical Journal Letters . 211: 107. Bibcode:1977ApJ...211L.107L. doi: 10.1086/182351 . ISSN   2041-8205.
  22. Kelly; Wasserburg (December 1978). "Evidence for the existence of 107Pd in the early solar system". Geophysical Research Letters. 5 (12): 1079. Bibcode:1978GeoRL...5.1079K. doi:10.1029/GL005i012p01079. (t1/2=6.5x10^6 yr)
  23. Diehl, R.; Dupraz, C.; Bennett, K.; et al. (1995). "COMPTEL observations of Galactic 26Al emission". Astronomy & Astrophysics . 298: 445. Bibcode:1995A&A...298..445D.
  24. Harris, M. J.; Knödlseder, J.; Jean, P.; Cisana, E.; Diehl, R.; Lichti, G. G.; Roques, J.-P.; Schanne, S.; Weidenspointner, G. (29 March 2005). "Detection of γ-ray lines from interstellar 60Fe by the high resolution spectrometer SPI". Astronomy & Astrophysics . 433 (3): L49. arXiv: astro-ph/0502219 . Bibcode:2005A&A...433L..49H. doi:10.1051/0004-6361:200500093. S2CID   5358047.
  25. Anders, E.; Zinner, E. (September 1993). "Interstellar grains in primitive meteorites: Diamond, silicon carbide, and graphite". Meteoritics. 28 (4): 490–514. Bibcode:1993Metic..28..490A. doi:10.1111/j.1945-5100.1993.tb00274.x.
  26. Zinner, E. (2014). "Presolar grains". In H. D. Holland; K. K. Turekian; A. M. Davis (eds.). Treatise on Geochemistry. Vol. 1. pp. 181–213. doi:10.1016/B978-0-08-095975-7.00101-7. ISBN   9780080959757.{{cite book}}: |journal= ignored (help)