Abundances of the elements (data page)

Last updated

Parts-per-million cube of relative abundance by mass of elements of the entire Earth down to around 1 ppm Element abundance earth ppm chart.svg
Parts-per-million cube of relative abundance by mass of elements of the entire Earth down to around 1 ppm

Earth bulk continental crust and upper continental crust

Mass fraction, in kg/kg
ElementC1C2C3C4C5C6U1U2
01 H hydrogen 1.40×10−31.520×10−3
02 He helium 8×10−9
03 Li lithium 2.0×10−52.0×10−51.8×10−51.3×10−51.37×10−52.0×10−52.2×10−5
04 Be beryllium 2.8×10−62.0×10−62×10−61.500×10−63.000×10−6
05 B boron 1.0×10−57.0×10−69×10−61.0000×10−51.5000×10−5
06 C carbon 2.00×10−41.80×10−43.76×10−3
07 N nitrogen 1.9×10−52.0×10−51.9×10−5
08 O oxygen 4.61×10−13.7×10−14.55000×10−1
09 F fluorine 5.85×10−44.6×10−45.44×10−45.25×10−4
10 Ne neon 5×10−9
11 Na sodium 2.36×10−22.3×10−22.2700×10−22.3000×10−22.4400×10−23.1000×10−22.89×10−22.57×10−2
12 Mg magnesium 2.33×10−22.8×10−22.7640×10−23.20×10−22.37×10−21.69×10−21.33×10−21.35×10−2
13 Al aluminium 8.23×10−28.0×10−28.3000×10−28.4100×10−28.3050×10−28.5200×10−28.0400×10−27.7400×10−2
14 Si silicon 2.82×10−12.7×10−12.72000×10−12.677×10−12.81×10−12.95×10−13.08×10−13.04×10−1
15 P phosphorus 1.05×10−31.0×10−31.120×10−37.63×10−48.30×10−4
16 S sulfur 3.50×10−43.0×10−43.40×10−48.81×10−4
17 Cl chlorine 1.45×10−41.9×10−41.26×10−41.900×10−3
18 Ar argon 3.5×10−6
19 K potassium 2.09×10−21.7×10−21.8400×10−29.100×10−31.7600×10−21.7000×10−22.8000×10−22.5700×10−2
20 Ca calcium 4.15×10−25.1×10−24.6600×10−25.2900×10−24.9200×10−23.4000×10−23.0000×10−22.9500×10−2
21 Sc scandium 2.2×10−52.2×10−52.5×10−53.0×10−52.14×10−51.1×10−57×10−6
22 Ti titanium 5.65×10−38.6×10−36.320×10−35.400×10−35.250×10−33.600×10−33.000×10−33.120×10−3
23 V vanadium 1.20×10−41.7×10−41.36×10−42.30×10−41.34×10−46.0×10−55.3×10−5
24 Cr chromium 1.02×10−49.6×10−51.22×10−41.85×10−41.46×10−45.6×10−53.5×10−53.5×10−5
25 Mn manganese 9.50×10−41.0×10−31.060×10−31.400×10−38.47×10−41.000×10−36.00×10−45.27×10−4
26 Fe iron 5.63×10−25.8×10−26.2000×10−27.07×10−24.92×10−23.8×10−23.50×10−23.09×10−2
27 Co cobalt 2.5×10−52.8×10−52.9×10−52.9×10−52.54×10−51.0×10−51.2×10−5
28 Ni nickel 8.4×10−57.2×10−59.9×10−51.05×10−46.95×10−53.5×10−52×10−51.9×10−5
29 Cu copper 6.0×10−55.8×10−56.8×10−57.5×10−54.7×10−52.5×10−51.4×10−5
30 Zn zinc 7.0×10−58.2×10−57.6×10−58.0×10−57.6×10−57.1×10−55.2×10−5
31 Ga gallium 1.9×10−51.7×10−51.9×10−51.8×10−51.86×10−51.7×10−51.4×10−5
32 Ge germanium 1.5×10−61.3×10−61.5×10−61.6×10−61.32×10−61.6×10−6
33 As arsenic 1.8×10−62.0×10−61.8×10−61.0×10−62.03×10−61.5×10−6
34 Se selenium 5×10−85×10−85×10−85×10−81.53×10−75×10−8
35 Br bromine 2.4×10−64.0×10−62.5×10−66.95×10−6
36 Kr krypton 1×10−10
37 Rb rubidium 9.0×10−57.0×10−57.8×10−53.2×10−57.90×10−56.1×10−51.12×10−41.10×10−4
38 Sr strontium 3.70×10−44.5×10−43.84×10−42.60×10−42.93×10−45.03×10−43.50×10−43.16×10−4
39 Y yttrium 3.3×10−53.5×10−73.1×10−52.0×10−51.4×10−52.2×10−52.1×10−5
40 Zr zirconium 1.65×10−41.4×10−41.62×10−41.00×10−42.10×10−41.90×10−42.40×10−4
41 Nb niobium 2.0×10−52.0×10−52.0×10−51.1000×10−51.3000×10−52.5000×10−52.6000×10−5
42 Mo molybdenum 1.2×10−61.2×10−61.2×10−61.000×10−61.500×10−6
43 Tc technetium
44 Ru ruthenium 1×10−91×10−10
45 Rh rhodium 1×10−91×10−10
46 Pd palladium 1.5×10−83×10−91.5×10−81.0×10−95×10−10
47 Ag silver 7.5×10−88×10−88×10−88.0×10−86.95×10−85.0×10−8
48 Cd cadmium 1.5×10−71.8×10−71.6×10−79.8×10−81.00×10−79.8×10−8
49 In indium 2.5×10−72×10−72.4×10−75.0×10−86.95×10−85.0×10−8
50 Sn tin 2.3×10−61.5×10−62.1×10−62.500×10−65.500×10−6
51 Sb antimony 2×10−72×10−72×10−72.00×10−72.03×10−72.00×10−7
52 Te tellurium 1×10−91×10−92.03×10−9
53 I iodine 4.5×10−75×10−74.6×10−71.540×10−6
54 Xe xenon 3×10−11
55 Cs caesium 3×10−61.6×10−62.6×10−61.000×10−61.310×10−63.700×10−6
56 Ba barium 4.25×10−43.8×10−43.90×10−42.50000×10−45.42000×10−47.07000×10−45.50000×10−41.070000×10−3
57 La lanthanum 3.9×10−55.0×10−53.5×10−51.6000×10−52.9000×10−52.8000×10−53.0000×10−53.200×10−6
58 Ce cerium 6.65×10−58.3×10−56.6×10−53.3000×10−55.4200×10−55.7000×10−56.4000×10−56.5000×10−5
59 Pr praseodymium 9.2×10−61.3×10−59.1×10−63.900×10−67.100×10−6
60 Nd neodymium 4.15×10−54.4×10−54.0×10−51.6000×10−52.5400×10−52.3000×10−52.6000×10−52.6000×10−5
61 Pm promethium
62 Sm samarium 7.05×10−67.7×10−67.0×10−63.500×10−65.590×10−64.100×10−64.500×10−64.500×10−6
63 Eu europium 2.0×10−62.2×10−62.1×10−61.100×10−61.407×10−61.090×10−68.80×10−79.40×10−7
64 Gd gadolinium 6.2×10−66.3×10−66.1×10−63.300×10−68.140×10−63.800×10−62.800×10−6
65 Tb terbium 1.2×10−61.0×10−61.2×10−66.00×10−71.020×10−65.30×10−76.40×10−74.80×10−7
66 Dy dysprosium 5.2×10−68.5×10−63.700×10−66.102×10−63.500×10−6
67 Ho holmium 1.3×10−61.6×10−61.3×10−67.80×10−71.860×10−68.00×10−76.20×10−7
68 Er erbium 3.5×10−63.6×10−63.5×10−62.200×10−63.390×10−62.300×10−6
69 Tm thulium 5.2×10−75.2×10−75×10−73.20×10−72.40×10−73.30×10−7
70 Yb ytterbium 3.2×10−63.4×10−63.1×10−62.200×10−63.390×10−61.530×10−62.200×10−61.500×10−6
71 Lu lutetium 8×10−78×10−73.00×10−75.76×10−72.30×10−73.20×10−72.30×10−7
72 Hf hafnium 3.0×10−64×10−62.8×10−63.000×10−63.460×10−64.700×10−65.800×10−65.800×10−6
73 Ta tantalum 2.0×10−62.4×10−61.7×10−61.000×10−62.203×10−62.200×10−6
74 W tungsten 1.25×10−61.0×10−61.2×10−61.000×10−61.310×10−62.000×10−6
75 Re rhenium 7×10−104×10−107×10−105×10−101.02×10−95×10−10
76 Os osmium 1.5×10−92×10−105×10−91.02×10−9
77 Ir iridium 1×10−92×10−101×10−91×10−101.02×10−92×10−11
78 Pt platinum 5×10−91×10−8
79 Au gold 4×10−92×10−94×10−93.0×10−94.07×10−91.8×10−9
80 Hg mercury 8.5×10−82×10−88×10−8
81 Tl thallium 8.5×10−74.7×10−77×10−73.60×10−77.50×10−75.20×10−7
82 Pb lead 1.4×10−51.0×10−51.3×10−58.000×10−61.5000×10−52.0000×10−51.7000×10−5
83 Bi bismuth 8.5×10−94×10−98×10−96.0×10−81.27×10−7
84 Po polonium 2×10−16
85 At astatine
86 Rn radon 4×10−19
87 Fr francium
88 Ra radium 9×10−13
89 Ac actinium 5.5×10−16
90 Th thorium 9.6×10−65.8×10−68.1×10−63.500×10−65.700×10−61.0700×10−51.0000×10−5
91 Pa protactinium 1.4×10−12
92 U uranium 2.7×10−61.6×10−62.3×10−69.10×10−71.200×10−61.300×10−62.800×10−62.500×10−6
93 Np neptunium
94 Pu plutonium

Urban soils

The established abundances of chemical elements in urban soils can be considered a geochemical (ecological and geochemical) characteristic, the accumulated impact of technogenic and natural processes at the beginning of the 21st century. The figures estimate average concentrations of chemical elements in the soils of more than 300 cities and settlements in Europe, Asia, Africa, Australia, and America. [1] Regardless of significant differences between abundances of several elements in urban soils and those values calculated for the Earth's crust, the element abundances in urban soils generally reflect those in the Earth's crust. With the development of technology the abundances may be refined.

Contents

Mass fraction, in mg/kg (ppm).

ElementAtomic numberAbundance in urban soils
Ag470.37
Al1338200
As3315.9
B545
Ba56853.12
Be43.3
Bi831.12
C645100
Ca2053800
Cd480.9
Cl17285
Co2714.1
Cr2480
Cs555.0
Cu2939
Fe2622300
Ga3116.2
Ge321.8
H115000
Hg800.88
K1913400
La5734
Li349.5
Mg127900
Mn25729
Mo422.4
N710000
Na115800
Nb4115.7
Ni2833
O8490000
P151200
Pb8254.5
Rb3758
S161200
Sb511.0
Sc219.4
Si14289000
Sn506.8
Sr38458
Ta731.5
Ti224758
Tl811.1
V23104.9
W742.9
Y3923.4
Yb702.4
Zn30158
Zr40255.6

Sea water

Mass per volume fraction, in kg/L. (The average density of sea water in the surface is 1.025 kg/L)

ElementW1W2
01 H hydrogen 1.08×10−11.1×10−1
02 He helium 7×10−127.2×10−12
03 Li lithium 1.8×10−71.7×10−7
04 Be beryllium 5.6×10−126×10−13
05 B boron 4.44×10−64.4×10−6
06 C carbon 2.8×10−52.8×10−5
07 N nitrogen 5×10−71.6×10−5
08 O oxygen 8.57×10−18.8×10−1
09 F fluorine 1.3×10−61.3×10−6
10 Ne neon 1.2×10−101.2×10−10
11 Na sodium 1.08×10−21.1×10−2
12 Mg magnesium 1.29×10−31.3×10−3
13 Al aluminium 2×10−91×10−9
14 Si silicon 2.2×10−62.9×10−6
15 P phosphorus 6×10−88.8×10−8
16 S sulfur 9.05×10−49.0×10−4
17 Cl chlorine 1.94×10−21.9×10−2
18 Ar argon 4.5×10−74.5×10−7
19 K potassium 3.99×10−43.9×10−4
20 Ca calcium 4.12×10−44.1×10−4
21 Sc scandium 6×10−13< 4×10−12
22 Ti titanium 1×10−91×10−9
23 V vanadium 2.5×10−91.9×10−9
24 Cr chromium 3×10−102×10−10
25 Mn manganese 2×10−101.9×10−9
26 Fe iron 2×10−93.4×10−9
27 Co cobalt 2×10−113.9×10−10
28 Ni nickel 5.6×10−106.6×10−9
29 Cu copper 2.5×10−102.3×10−8
30 Zn zinc 4.9×10−91.1×10−8
31 Ga gallium 3×10−113×10−11
32 Ge germanium 5×10−116×10−11
33 As arsenic 3.7×10−92.6×10−9
34 Se selenium 2×10−109.0×10−11
35 Br bromine 6.73×10−56.7×10−5
36 Kr krypton 2.1×10−102.1×10−10
37 Rb rubidium 1.2×10−71.2×10−7
38 Sr strontium 7.9×10−68.1×10−6
39 Y yttrium 1.3×10−111.3×10−12
40 Zr zirconium 3×10−112.6×10−11
41 Nb niobium 1×10−111.5×10−11
42 Mo molybdenum 1×10−81.0×10−8
43 Tc technetium
44 Ru ruthenium 7×10−13
45 Rh rhodium
46 Pd palladium
47 Ag silver 4×10−112.8×10−10
48 Cd cadmium 1.1×10−101.1×10−10
49 In indium 2×10−8
50 Sn tin 4×10−128.1×10−10
51 Sb antimony 2.4×10−103.3×10−10
52 Te tellurium
53 I iodine 6×10−86.4×10−8
54 Xe xenon 5×10−114.7×10−11
55 Cs caesium 3×10−103.0×10−10
56 Ba barium 1.3×10−82.1×10−8
57 La lanthanum 3.4×10−123.4×10−12
58 Ce cerium 1.2×10−121.2×10−12
59 Pr praseodymium 6.4×10−136.4×10−13
60 Nd neodymium 2.8×10−122.8×10−12
61 Pm promethium
62 Sm samarium 4.5×10−134.5×10−13
63 Eu europium 1.3×10−131.3×10−13
64 Gd gadolinium 7×10−137.0×10−13
65 Tb terbium 1.4×10−131.4×10−12
66 Dy dysprosium 9.1×10−139.1×10−13
67 Ho holmium 2.2×10−132.2×10−13
68 Er erbium 8.7×10−138.7×10−12
69 Tm thulium 1.7×10−131.7×10−13
70 Yb ytterbium 8.2×10−138.2×10−13
71 Lu lutetium 1.5×10−131.5×10−13
72 Hf hafnium 7×10−12< 8×10−12
73 Ta tantalum 2×10−12< 2.5×10−12
74 W tungsten 1×10−10< 1×10−12
75 Re rhenium 4×10−12
76 Os osmium
77 Ir iridium
78 Pt platinum
79 Au gold 4×10−121.1×10−11
80 Hg mercury 3×10−111.5×10−10
81 Tl thallium 1.9×10−11
82 Pb lead 3×10−113×10−11
83 Bi bismuth 2×10−112×10−11
84 Po polonium 1.5×10−20
85 At astatine
86 Rn radon 6×10−22
87 Fr francium
88 Ra radium 8.9×10−17
89 Ac actinium
90 Th thorium 1×10−121.5×10−12
91 Pa protactinium 5×10−17
92 U uranium 3.2×10−93.3×10−9
93 Np neptunium
94 Pu plutonium

Sun and Solar System

Atom mole fraction relative to silicon = 1.

ElementS1Y1Y2
01 H hydrogen 2.8×1042.8×104*2.79×104
02 He helium 2.7×1032.7×103*2.72×103
03 Li lithium 4.0×10−75.7×10−55.71×10−5 (9.2%)
04 Be beryllium 4.0×10−77.0×10−77.30×10−7 (9.5%)
05 B boron 1.1×10−52.1×10−52.12×10−5 (10%)
06 C carbon 1.0×1011.0×101*1.01×101
07 N nitrogen 3.1×1003.1×100*3.13×100
08 O oxygen 2.4×1012.4×101*2.38×101 (10%)
09 F fluorine about 1.0×10−38.5×10−48.43×10−4 (15%)
10 Ne neon 3.0×1003.0×100*3.44×100 (14%)
11 Na sodium 6.0×10−25.7×10−25.74×10−2 (7.1%)
12 Mg magnesium 1.0×1001.1×1001.074×100 (3.8%)
13 Al aluminium 8.3×10−28.5×10−28.49×10−2 (3.6%)
14 Si silicon 1.0×1001.0×1001.0×100 (4.4%)
15 P phosphorus 8.0×10−31.0×10−21.04×10−2 (10%)
16 S sulfur 4.5×10−15.2×10−15.15×10−1 (13%)
17 Cl chlorine about 9.0×10−35.2×10−35.24×10−3 (15%)
18 Ar argon 1.0×10−1*1.0×10−1*1.01×10−1 (6%)
19 K potassium 3.7×10−33.8×10−33.77×10−3 (7.7%)
20 Ca calcium 6.4×10−26.1×10−26.11×10−2 (7.1%)
21 Sc scandium 3.5×10−53.4×10−53.42×10−5 (8.6%)
22 Ti titanium 2.7×10−32.4×10−32.40×10−3 (5.0%)
23 V vanadium 2.8×10−42.9×10−42.93×10−4 (5.1%)
24 Cr chromium 1.3×10−21.3×10−21.35×10−2 (7.6%)
25 Mn manganese 6.9×10−39.5×10−39.55×10−3 (9.6%)
26 Fe iron 9.0×10−19.0×10−19.00×10−1 (2.7%)
27 Co cobalt 2.3×10−32.3×10−32.25×10−3 (6.6%)
28 Ni nickel 5.0×10−25.0×10−24.93×10−2 (5.1%)
29 Cu copper 4.5×10−45.2×10−45.22×10−4 (11%)
30 Zn zinc 1.1×10−31.3×10−31.26×10−3 (4.4%)
31 Ga gallium 2.1×10−53.8×10−53.78×10−5 (6.9%)
32 Ge germanium 7.2×10−51.2×10−41.19×10−4 (9.6%)
33 As arsenic 6.6×10−66.56×10−6 (12%)
34 Se selenium 6.3×10−56.21×10−5 (6.4%)
35 Br bromine 1.2×10−51.18×10−5 (19%)
36 Kr krypton 4.8×10−54.50×10−5 (18%)
37 Rb rubidium 1.1×10−57.0×10−67.09×10−6 (6.6%)
38 Sr strontium 2.2×10−52.4×10−52.35×10−5 (8.1%)
39 Y yttrium 4.9×10−64.6×10−64.64×10−6 (6.0%)
40 Zr zirconium 1.12×10−51.14×10−51.14×10−5 (6.4%)
41 Nb niobium 7.0×10−77.0×10−76.98×10−7 (1.4%)
42 Mo molybdenum 2.3×10−62.6×10−62.55×10−6 (5.5%)
43 Tc technetium
44 Ru ruthenium 1.9×10−61.9×10−61.86×10−6 (5.4%)
45 Rh rhodium 4.0×10−73.4×10−73.44×10−7 (8%)
46 Pd palladium 1.4×10−61.4×10−61.39×10−6 (6.6%)
47 Ag silver about 2.0×10−74.9×10−74.86×10−7 (2.9%)
48 Cd cadmium 2.0×10−61.6×10−61.61×10−6 (6.5%)
49 In indium about 1.3×10−61.9×10−71.84×10−7 (6.4%)
50 Sn tin about 3.0×10−63.9×10−63.82×10−6 (9.4%)
51 Sb antimony about 3.0×10−73.1×10−73.09×10−7 (18%)
52 Te tellurium 4.9×10−64.81×10−6 (10%)
53 I iodine 9.0×10−79.00×10−7 (21%)
54 Xe xenon 4.8×10−64.70×10−6 (20%)
55 Cs caesium 3.7×10−73.72×10−7 (5.6%)
56 Ba barium 3.8×10−64.5×10−64.49×10−6 (6.3%)
57 La lanthanum 5.0×10−74.4×10−74.46×10−7 (2.0%)
58 Ce cerium 1.0×10−61.1×10−61.136×10−6 (1.7%)
59 Pr praseodymium 1.4×10−71.7×10−71.669×10−7 (2.4%)
60 Nd neodymium 9.0×10−78.3×10−78.279×10−7 (1.3%)
61 Pm promethium
62 Sm samarium 3.0×10−72.6×10−72.582×10−7 (1.3%)
63 Eu europium 9.0×10−89.7×10−89.73×10−8 (1.6%)
64 Gd gadolinium 3.7×10−73.3×10−73.30×10−7 (1.4%)
65 Tb terbium about 2.0×10−86.0×10−86.03×10−8 (2.2%)
66 Dy dysprosium 3.5×10−74.0×10−73.942×10−7 (1.4%)
67 Ho holmium about 5.0×10−88.9×10−88.89×10−8 (2.4%)
68 Er erbium 2.4×10−72.5×10−72.508×10−7 (1.3%)
69 Tm thulium about 3.0×10−83.8×10−83.78×10−8 (2.3%)
70 Yb ytterbium 3.4×10−72.5×10−72.479×10−7 (1.6%)
71 Lu lutetium about 1.5×10−73.7×10−83.67×10−8 (1.3%)
72 Hf hafnium 2.1×10−71.5×10−71.54×10−7 (1.9%)
73 Ta tantalum 3.8×10−82.07×10−8 (1.8%)
74 W tungsten about 3.6×10−71.3×10−71.33×10−7 (5.1%)
75 Re rhenium 5.0×10−85.17×10−8 (9.4%)
76 Os osmium 8.0×10−76.7×10−76.75×10−7 (6.3%)
77 Ir iridium 6.0×10−76.6×10−76.61×10−7 (6.1%)
78 Pt platinum about 1.8×10−61.34×10−61.34×10−6 (7.4%)
79 Au gold about 3.0×10−71.9×10−71.87×10−7 (15%)
80 Hg mercury 3.4×10−73.40×10−7 (12%)
81 Tl thallium about 2.0×10−71.9×10−71.84×10−7 (9.4%)
82 Pb lead 2.0×10−63.1×10−63.15×10−6 (7.8%)
83 Bi bismuth 1.4×10−71.44×10−7 (8.2%)
84 Po polonium
85 At astatine
86 Rn radon
87 Fr francium
88 Ra radium
89 Ac actinium
90 Th thorium 5.0×10−84.5×10−83.35×10−8 (5.7%)
91 Pa protactinium
92 U uranium 1.8×10−89.00×10−9 (8.4%)
93 Np neptunium
94 Pu plutonium

See also

Notes

Due to the estimate nature of these values, no single recommendations are given. All values are normalized for these tables. Underlined zeroes indicate figures of indeterminable significance that were present in the source notation.

Related Research Articles

Geochemistry is the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth's crust and its oceans. The realm of geochemistry extends beyond the Earth, encompassing the entire Solar System, and has made important contributions to the understanding of a number of processes including mantle convection, the formation of planets and the origins of granite and basalt. It is an integrated field of chemistry and geology.

In physics, natural abundance (NA) refers to the abundance of isotopes of a chemical element as naturally found on a planet. The relative atomic mass of these isotopes is the atomic weight listed for the element in the periodic table. The abundance of an isotope varies from planet to planet, and even from place to place on the Earth, but remains relatively constant in time.

The Goldschmidt classification, developed by Victor Goldschmidt (1888–1947), is a geochemical classification which groups the chemical elements within the Earth according to their preferred host phases into lithophile (rock-loving), siderophile (iron-loving), chalcophile, and atmophile (gas-loving) or volatile.

The abundance of the chemical elements is a measure of the occurrence of the chemical elements relative to all other elements in a given environment. Abundance is measured in one of three ways: by mass fraction, by mole fraction, or by volume fraction. Volume fraction is a common abundance measure in mixed gases such as planetary atmospheres, and is similar in value to molecular mole fraction for gas mixtures at relatively low densities and pressures, and ideal gas mixtures. Most abundance values in this article are given as mass fractions.

Isotope geochemistry is an aspect of geology based upon the study of natural variations in the relative abundances of isotopes of various elements. Variations in isotopic abundance are measured by isotope-ratio mass spectrometry, and can reveal information about the ages and origins of rock, air or water bodies, or processes of mixing between them.

<span class="mw-page-title-main">Earth's crust</span> Earths outer shell of rock

Earth's crust is its thick outer shell of rock, referring to less than one percent of the planet's radius and volume. It is the top component of the lithosphere, a division of Earth's layers that includes the crust and the upper part of the mantle. The lithosphere is broken into tectonic plates whose motion allows heat to escape the interior of Earth into space.

Elastic properties describe the reversible deformation of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength.

The abundance of elements in Earth's crust is shown in tabulated form with the estimated crustal abundance for each chemical element shown as mg/kg, or parts per million (ppm) by mass.

The Petrological Database of the Ocean Floor (PetDB) is a relational database for global geochemical data on igneous and metamorphic rocks generated at mid-ocean ridges including back-arc basins, young seamounts, and old oceanic crust, as well as ophiolites and terrestrial xenoliths from the mantle and lower crust and diamond geochemistry. These data are obtained by analyses of whole rock powders, volcanic glasses, and minerals by a wide range of techniques including mass spectrometry, atomic emission spectrometry, x-ray fluorescence spectrometry, and wet chemical analyses. Data are compiled from the scientific literature by PetDB data managers, and entered after methodical metadata review. Members of the scientific community can also suggest entry of specific data that has been entered into the EarthChem Library. PetDB is administered by the EarthChem group under the IEDA facility at LDEO headed by K. Lehnert. PetDB is supported by the U.S. National Science Foundation.

The following outline is provided as an overview of and topical guide to geology:

<span class="mw-page-title-main">Extraterrestrial materials</span> Natural objects that originated in outer space

Extraterrestrial material refers to natural objects now on Earth that originated in outer space. Such materials include cosmic dust and meteorites, as well as samples brought to Earth by sample return missions from the Moon, asteroids and comets, as well as solar wind particles.

CI chondrites, also called C1 chondrites or Ivuna-type carbonaceous chondrites, are a group of rare carbonaceous chondrite, a type of stony meteorite. They are named after the Ivuna meteorite, the type specimen. CI chondrites have been recovered in France, Canada, India, and Tanzania. Their overall chemical composition closely resembles the elemental composition of the Sun, more so than any other type of meteorite.

<span class="mw-page-title-main">Composition of Mars</span> Branch of the geology of Mars

The composition of Mars covers the branch of the geology of Mars that describes the make-up of the planet Mars.

Potassium–calcium dating, abbreviated K–Ca dating, is a radiometric dating method used in geochronology. It is based upon measuring the ratio of a parent isotope of potassium to a daughter isotope of calcium. This form of radioactive decay is accomplished through beta decay.

<span class="mw-page-title-main">Hadean zircon</span> Oldest-surviving crustal material from the Earths earliest geological time period

Hadean zircon is the oldest-surviving crustal material from the Earth's earliest geological time period, the Hadean eon, about 4 billion years ago. Zircon is a mineral that is commonly used for radiometric dating because it is highly resistant to chemical changes and appears in the form of small crystals or grains in most igneous and metamorphic host rocks.

Clarke number or clarke is the relative abundance of a chemical element, typically in Earth's crust. The technical definition of "Earth's crust" varies among authors, and the actual numbers also vary significantly.

The K/U Ratio is the ratio of a slightly volatile element, potassium (K), to a highly refractory element, uranium (U). It is a useful way to measure the presence of volatile elements on planetary surfaces. The K/U ratio helps explain the evolution of the planetary system and the origin of Earth's moon.

<span class="mw-page-title-main">Fluorine cycle</span> Biogeochemical cycle

The fluorine cycle is the series of biogeochemical processes through which fluorine moves through the lithosphere, hydrosphere, atmosphere, and biosphere. Fluorine originates from the Earth’s crust, and its cycling between various sources and sinks is modulated by a variety of natural and anthropogenic processes.

References

  1. Vladimir Alekseenko; Alexey Alekseenko (2014). "The abundances of chemical elements in urban soils". Journal of Geochemical Exploration. 147: 245–249. Bibcode:2014JCExp.147..245A. doi:10.1016/j.gexplo.2014.08.003. ISSN   0375-6742. S2CID   128989333.

CRC Handbook

From these sources in an online version of David R. Lide (ed.), CRC Handbook of Chemistry and Physics, 85th Edition. CRC Press. Boca Raton, Florida (2005). Section 14, Geophysics, Astronomy, and Acoustics; Abundance of Elements in the Earth's Crust and in the Sea:

  • R.S. Carmichael (ed.), CRC Practical Handbook of Physical Properties of Rocks and Minerals, CRC Press, Boca Raton, FL, (1989).
  • I. Bodek et al., Environmental Inorganic Chemistry, Pergamon Press, New York, (1988).
  • A.B. Ronov, A.A. Yaroshevsky, Earth's Crust Geochemistry, in Encyclopedia of Geochemistry and Environmental Sciences, R.W. Fairbridge (ed.), Van Nostrand, New York, (1969).
Estimated abundance of the elements in the continental crust (C1) and in seawater near the surface (W1). The median values of reported measurements are given. Concentrations of the less abundant elements may vary with location by several orders of magnitude.

Kaye & Laby

National Physical Laboratory, Kaye and Laby Tables of Physical & Chemical Constants (2005). Section 3.1.3, Abundances of the elements, B.E.J. Pagel

Abundances in sea water (W2) and in crustal rocks (C2) from:
For the sun (S1) and the solar system (Y1) from:
  • N. Grevesse, E. Anders, J. Waddington (ed.) in Cosmic Abundances of Matter, Amer. Inst. Phys., New York, p. 1. (1988).
Except solar iron abundance from:
  • H. Holweger, A. Bard, A. Kock, M. Kock, Astron. Astrophys., 249, 545. (1991).
Accuracy of the solar abundances varies between ± 10% and a factor of two, values more uncertain than that are marked with "about". The Solar System abundances are mainly derived from carbonaceous chondrite meteorites and are assumed generally accurate to ±10% or better. Solar System abundances based on other sources are marked with asterisks (*).

Greenwood

A. Earnshaw, N. Greenwood, Chemistry of the Elements, 2nd edition, Butterworth-Heinemann, (1997). ISBN   0-7506-3365-4 Appendix 4, Abundance of Elements in Crustal Rocks.

From this source with some modifications and additions of later data:
  • W.S. Fyfe, Geochemistry, Oxford University Press, (1974).
Further referring to:
  • C.K. Jorgensen, Comments Astrophys. 17, 49–101 (1993).
Values are subject to various geological assumptions but assumed acceptable as an indication of elemental abundance in crustal rocks (C3).

Ahrens

Newsom, Horton E. (1995), "Composition of the Solar System, Planets, Meteorites, and Major Terrestrial Reservoirs", in Ahrens, Thomas J. (ed.), Global Earth Physics : A Handbook of Physical Constants, AGU Reference Shelf, vol. 1, American Geophysical Union, Tables 1, 14, 15., Bibcode:1995geph.conf.....A, doi:10.1029/RF001, ISBN   0-87590-851-9

Bulk continental crust (C4) and upper continental crust (U1) from:
  • S.R. Taylor, S.M. McLennan, The continental crust: Its composition and evolution, Blackwell Sci. Publ., Oxford, 330 pp. (1985).
Upper continental crust (U2) from:
  • D.M. Shaw, J. Dostal, R.R. Keays, Additional estimates of continental surface Precambrian shield composition in Canada, Geochim. Cosmochim. Acta, 40, 73–83, (1976).
Bulk continental crust (C5) from:
  • H. Wänke, G. Dreibus, E. Jagoutz, Mantle chemistry and accretion history of the Earth, in Archean Geochemistry, A. Kröner, G.N. Hanson, A.M. Goodwin (eds.), pp. l-24, Springer-Verlag, Berlin, (1984).
Bulk continental crust (C6) from:
  • B.L. Weaver, J. Tamey, Major and trace element composition of the continental lithosphere, in Physics and Chemistry of the Earth, 15, H.N. Pollack, V.R. Murthy (eds.) pp. 39–68, Pergamon, Oxford, (1984).
Solar system (Y2) from:

Urban soils

  • Alekseenko V.A., Alekseenko A.V. (2013) Chemical elements in geochemical systems. The abundances in urban soils. Publishing House of Southern Federal University, Rostov-on-Don (388 pp., in Russian with English Abstract). ISBN   978-5-9275-1095-5
  • Vladimir Alekseenko, Alexey Alekseenko (2014) The abundances of chemical elements in urban soils. Journal of Geochemical Exploration. No. 147 (B). pp. 245–249. doi : 10.1016/j.gexplo.2014.08.003