Lists of metalloids

Last updated

This is a list of 194 sources that list elements classified as metalloids. The sources are listed in chronological order. Lists of metalloids differ since there is no rigorous widely accepted definition of metalloid (or its occasional alias, 'semi-metal'). Individual lists share common ground, with variations occurring at the margins. The elements most often regarded as metalloids are boron, silicon, germanium, arsenic, antimony and tellurium. [n 1] Other sources may subtract from this list, add a varying number of other elements, or both.

Contents

Overview

  13 14 15 16 17
2 B
Boron
C
Carbon
N
Nitrogen
O
Oxygen
F
Fluorine
3 Al
Aluminium
Si
Silicon
P
Phosphorus
S
Sulfur
Cl
Chlorine
4 Ga
Gallium
Ge
Germanium
As
Arsenic
Se
Selenium
Br
Bromine
5 In
Indium
Sn
Tin
Sb
Antimony
Te
Tellurium
I
Iodine
6 Tl
Thallium
Pb
Lead
Bi
Bismuth
Po
Polonium
At
Astatine
 
  Commonly recognized (86–99%): B, Si, Ge, As, Sb, Te
  Irregularly recognized (40–49%): Po, At
  Less commonly recognized (24%): Se
  Rarely recognized (8–10%): C, Al
  (All other elements cited in less than 6% of sources)
  Arbitrary metal-nonmetal dividing line: between Be and B, Al and Si, Ge and As, Sb and Te, Po and At

Recognition status, as metalloids, of some elements in the p-block of the periodic table. Percentages are median appearance frequencies in the lists of metalloids. [n 2] The staircase-shaped line is a typical example of the arbitrary metal–nonmetal dividing line found on some periodic tables.

ElementCitationsFrequency
 in n = 194
publications
194 = 100%
 
ArsenicAs191.599%
TelluriumTe190.598%
GermaniumGe184.595%
SiliconSi183.595%
AntimonySb169.587%
BoronB16686%
PoloniumPo94.549%
AstatineAt7740%
SeleniumSe4624%
AluminiumAl189.3%
CarbonC16.58.5%
BismuthBi11.55.9%
PhosphorusP105.2%
BerylliumBe7.53.9%
TinSn5.52.8%
SulfurS31.5%
LivermoriumLv31.5%
IodineI2.51.3%
FleroviumFl10.5%
GalliumGa10.5%
HydrogenH10.5%
LeadPb10.5%
MoscoviumMc10.5%
TennessineTs10.5%

Chronological list

This table shows which elements are included in each of 194 different lists of metalloids. A parenthesized symbol indicates an element whose inclusion in a particular metalloid list is qualified in some way by the author(s). The 'citations' rows show how many and what percentage of the authorities consider each element to be a metalloid, with qualified citations counted as one-half.

Citations as metalloid by element
Element Arsenic Tellu­rium Germa­nium Silicon Anti­mony Boron Polo­nium Asta­tine Sele­nium Alu­minium Carbon Bis­muth Phos­phorus Beryl­lium Tin Sulfur Liver­morium Iodine OtherCount
AsTeGeSiSbBPoAtSeAlCBiPBeSnSLvIavg
Citations
(with qualification)*
191.5
(1)
190.5
(1)
184.5
(3)
183.5
(1)
169.5
(3)
166
(2)
94.5
(5)
77
(6)
46
(4)
18
(2)
16.5
(3)
11.5
(1)
10
(2)
7.5
(1)
5.5
(1)
3
(0)
3
(0)
2.5
(1)
6
(0)''
7.15
 
(% out of 194)99%98%95%95%87%86%49%40%24%9.3%8.5%5.9%5.2%3.9%2.8%1.5%1.5%1.3%3.1%
SourceYr
Simmons [1] 1947AsTeSbSe 4
Pauling [2] 1949AsTeGeSiSbBPo 7
Szabó & Lakatos [3] 1954AsTeGeSiSbBPoAtAlBe 10
Dull, Metcalfe & Williams [4] 1958AsTeGeSiSbBPoAtAl 9
Frey [5] 1958AsTeGeSiSbBPo 7
Johnstone & Miller [6] 1960AsTeGeSiSbBSeCP 9
Edwards et al. [7] 1961AsTeGeSiSbBSeI 8
Bond [8] 1962AsTeGeSiSbBPo 7
Swift & Schaefer [9] 1962AsGeSiSbBBi 6
Hoffman [10] 1963AsTeGeSiSbBBe 7
Nathans [11] 1963AsTeGeSiSbBAt 7
Bailar, Moeller & Kleinberg [12] 1965AsTeGeSe 4
Selwood [13] 1965AsTeGeSiSbBPoAtAlBiSn Ga 12
Bassett et al. [14] 1966TeGeSiSbBPoAlBe 8
Hultgren [15] 1966AsTeGeSiSbSeC 7
Metcalfe, Williams & Castka [16] 1966AsTeGeSiSbBPo(Al) 7.5
Rochow [17] 1966AsTeGeSiSbB(Po)(At)(Se)(C)(Bi)(P) 9
Mahan [18] 1967AsTeGeSiB 5
Paul, King & Farinholt [19] 1967AsTeGeSiSbSe 6
Siebring [20] 1967AsTeGeSiSbBPoAl 8
Cotton & Lynch [21] 1968AsTeGeSiSbBAtSeC 9
Dunstan [22] 1968AsTe(Ge)SbPoAlBiBeSn Pb 7.5
Tyrell & Warren [23] 1968AsTe(Ge)Si(Sb)B(Po)At(Se)(Al)(C)(P)(I) 9.5
Williams, Embree & DeBey [24] 1968AsTeGeSiSbBPoAl 8
Chedd [25] 1969AsTeGeSiSbBPoAt 8
Hägg [26] 1969AsTeGeSbAtSn 6
Holum [27] 1969AsTeGeSiSbBPoAtAl 9
Hunter [28] 1969AsTeSiSbSe 5
Moody [29] 1969AsTeGeSiSbBPoAtAlBe 10
Dickerson, Gray & Haight [30] 1970AsTeGeSiSbB 6
Hardwick & Knobler [31] 1970AsTeGeSiSbB 6
Williams, Embree & DeBay [32] 1970AsTeGeSiSbBPoAlBe 9
Dickson [33] 1971AsTeGeSiSbPo 6
Emsley [34] 1971AsTeGeSb 4
Nitz & Dhonau [35] 1971AsTeGeSiSbBPo 7
Pimentel & Spratley [36] 1971AsTeGeSiSbB(Po)(At)SeC 9
Barrow [37] 1972AsTeGeSiB 5
Choppin & Johnsen [38] 1972AsTeGeSiSbBSe 7
Horvath [39] 1973AsTeGeSiSbBPo 7
Pascoe [40] 1973TeGeSiBAtSeCP 8
Seager & Stoker [41] 1973AsTeGeSiSbBPoAtAlBe 10
Allen & Keefer [42] 1974AsTeGeSiSbBAtSe 8
Andrews [43] 1974AsTeSiBAt 5
Day & Johnson [44] 1974AsTeGeSiSbPoAt 7
Dickson [45] 1974AsTeGeSiSbPoAt 7
Duffy [46] 1974AsTeGeSbSe 5
Fuller [47] 1974AsTeGeSiBSeC 7
Nordmann [48] 1974AsTeGeSiBPoAtSe 8
O'Connor [49] 1974AsTeGeSiSbBPo 7
Rock & Gerhold [50] 1974AsTeGeSiSbBPoAt 8
Pauling & Pauling [51] 1975AsTeGeSiSbBPo 7
Hearst & Ifft [52] 1976AsTeGeSiSbBSe 7
Tyler Miller [53] 1976AsTeGeSiSbBPoAtAl H 10
Waser, Trueblood & Knobler [54] 1976AsTeGeSiSbBPo 7
Bloomfield [55] 1977AsTeGeSiSbBPoAtAl 9
Ucko [56] 1977AsTeGeSiSbBPoAtAl 9
Hill & Holman [57] 1978AsTeGeSiB(C) 5.5
Coxon, Fergusson & Phillips [58] 1980AsTeGeSi(Sb)BAt(Be) 7
Warrena & Geballe [59] 1981AsTeSiBAtSeCPS 9
Walters [60] 1982AsTeGeSiB 5
Edwards & Sienko [61] 1983AsTeGeSbPo(At) 5.5
Holtzclaw, Robinson & Nebergall [62] 1984AsTeGeSiSbBPoAt 8
Boikess & Edelson [63] 1985AsTeGeSiB 5
Peters [64] 1986AsTeGeSiSbBPoAt 8
Hibbert & James [65] 1987AsTeGeSiSbPoBi 7
Jones et al. [66] 1987AsTeGeSiSbBPoAt 8
McQuarrie & Rock [67] 1987AsTeGeSiSbBPoAt 8
Wulfsberg [68] 1987AsTeGeSiSbBSe 7
Thayer [69] 1988AsTeGeSiBP 6
Whitten, Gailey & Davis [70] 1988AsTeGeSiSbBPoAtAl 9
Bailar et al. [71] 1989AsTeGeSiSbBSe 7
Gill [72] 1989AsTeGeSiSbB 6
Malone [73] 1989AsTeGeSiSbBPoAt 8
Petrucci [74] 1989AsTeGeSiSbPoAt 7
Puddephatt & Monaghan [75] 1989AsTeGeSiSbB 6
Scott [76] 1989AsTeGeSiSbB 6
Segal [77] 1989AsTeGeSiSbBPo 7
Oxtoby, Nachtrieb & Freeman [78] 1990AsTeGeSiSbBPoAt 8
Atkins & Beran [79] 1990AsTeGeSiSbPo 6
Ebbing & Wrighton [80] 1993AsTeGeSiSbBAt 7
Zumdahl [81] 1993AsTeGeSiSbBPoAt 8
Birk [82] 1994AsTeGeSiSbBPo 7
Smith [83] 1994AsTeGeSiSbB 6
AAE [84] 1996AsTeGeSiSbBSe 7
Brady & Holum [85] 1996AsTeGeSiSbBPoAt 8
Harrison & de Mora [86] 1996AsTeGeSiB 5
Hook & Post [87] 1996AsTeGeSiSbBPoAt 8
Atkins & Jones [88] 1997AsTeGeSiSbPo 6
Dayah [89] 1997AsTeGeSiSbBPo 7
Mingos [90] 1998AsTeGeSiSbBPo 7
Joesten & Wood [91] 1999AsTeGeSiSbB 6
Kremer [92] 1999AsTeGeSiSbB 6
Thompson [93] 1999AsTeGeSiSbB 6
Umland & Bellama [94] 1999AsTeGeSiBAtSe 7
Callister [95] 2000AsTeGeSiBSeC 7
Enloe [96] 2000AsTeSiBAt 5
Mann, Meek & Allen [97] 2000AsTeGeSiSbBPoBi 8
Phillips, Stozak & Wistrom [98] 2000AsTeGeSiSbBPoAt 8
Ryan [99] 2000AsTeGeSiB 5
Hawkes [100] 2001AsTeGeSbSeBi 6
Lewis & Evans [101] 2001AsTeGeSiSbBPo 7
Masterton & Hurley [102] 2001AsTeGeSiSbB 6
Barrett [103] 2002(As)(Te)(Ge)(Si)(Sb)(B)(Se) 3.5
Chang [104] 2002AsTeGeSiSbBPoAtLv Ts 10
Harding, Johnson & Janes [105] 2002AsTeGeSiSb 5
Johnson [106] 2002AsTeGeSiSbAt 6
Rodgers [107] 2002AsTeGeSiSbBAt 7
Szefer [108] 2002AsTeGeSiSbSe 6
Woodgate [109] 2002AsTeGeSbAl 5
Wright & Welbourn [110] 2002AsTeGeSiB 5
e-encyclopedia [111] 2003AsTeGeSiSbBSe 7
Gupta [112] 2003AsTeGeSiSbB 6
Hunt [113] 2003AsTeGeSiSbB 6
Myers [114] 2003AsTeGeSiSbBAtSe 8
Williams [115] 2003AsTeGeSiSbBPo 7
Atkins [116] 2004AsTeGeSiSbBPo 7
Cox [117] 2004AsTeGeSiSbSe 6
Gilbert, Kirss & Davies [118] 2004AsTeGeSiSbBAtSe 8
Reilly [119] 2004AsTeGeSiSbBPoAtSe 9
Ebbing & Gammon [120] 2005AsTeGeSiSbBAt 7
Fry & Page [121] 2005AsTeGeSiSbB 6
Halliday, Resnick & Walker [122] 2005AsTeGeSiSbBPoAt 8
Holler & Selegue [123] 2005AsTeGeSiSbBPo(At) 7.5
Kotz, Treichel & Weaver [124] 2005AsTeGeSiSbB 6
Meyer [125] 2005AsTeGeSiSbBAt 7
Orchin [126] 2005AsTeGeSiSbBPoAt 8
Swenson [127] 2005AsTeGeSiSbBPoAtSeCBi 11
Baird [128] 2006AsTeGeSiSbBAt 7
Blei & Odian [129] 2006AsTeGeSiSbPoAtLv 8
Brown & Holme [130] 2006AsTeGeSiSbBAt 7
Dashek & Harrison [131] 2006AsTeGeSiSbBPoAt 8
Finch et al. [132] 2006AsTeGeSiSbBSe 7
Goldfrank & Flomenbaum [133] 2006AsTeGeSiSbBAt 7
Hatt [134] 2006AsTeGeSiSbBSe 7
Hérold [135] 2006AsGeSiBPo(At)SeCBiP 9.5
McMonagle [136] 2006AsTeGeSiBLv Fl
Mc
8
Rayner-Canham & Overton [137] 2006AsTeGeSiB 5
Silberberg [138] 2006AsTeGeSiSbB 6
Slade [139] 2006AsTeGeSiSbBPo 7
Wertheim, Oxlade & Stockley [140] 2006AsTeGeSiSbBAtSe 8
Whitley [141] 2006AsTeGeSiSbBPo 7
American Chemical Society [142] 2007AsTeGeSiSbBPo 7
Astruc [143] 2007AsSiBSePS 6
Casper [144] 2007AsTeGeSiSbBPo 7
Crystal [145] 2007AsTeGeSiSbBPo 7
DeGraff [146] 2007AsTeGeSiSbBPo 7
Joesten, Hogg & Castellion [147] 2007AsTeGeSiSbB 6
Lewis [148] 2007AsTeGeSiSbBPoSeCPS 11
Petty [149] 2007AsTeGeSiSbBPoAtSeCBiPSn 13
Rösler, Harders & Bäker [150] 2007AsTeGeSiSbB(Sn) 6.5
Saunders [151] 2007AsTeGeSiSbBPoAt 8
Saunders [152] 2007AsTeGeSiSbBPoAt 8
Shipman, Wilson & Tood [153] 2007AsTeGeSiSbB 6
Bauer, Birk & Sawyer [154] 2008AsTeGeSiSbBAt 7
Clugston & Flemming [155] 2008AsTeGeSiSbSe 6
Encyclopedia Columbia [156] 2008AsTeSbSe 4
Ham [157] 2008AsTeGeSiSbBPo 7
Kelter, Mosher & Scott [158] 2008AsTeGeSiSbBAt 7
Masterton & Hurley [159] 2008AsTeGeSiSbB 6
Merck [160] 2008AsTeGeSiSbBPo 7
Nicolaou & Montagnon [161] 2008AsTeGeSiSbBPoAtC 9
Řezanka & Sigler [162] 2008AsTeSiBAtSe 6
Tro & Neu [163] 2008AsTeGeSiSbB 6
Vallero [164] 2008AsTeGeSiSbBPo 7
Brown et al. [165] 2009AsTeGeSiSbB 6
Burrows et al. [166] 2009AsTeGeSiSbBSe 7
Castor-Perry [167] 2009AsTeGeSiSbBPoAtI 9
Cracolice & Peters [168] 2009AsTeGeSiSbBAt 7
Economou [169] 2009AsTeGeSiSbBPoAtAl 9
Habashi [170] 2009AsTeGeSiSbBPoSeBi 9
Hein & Arena [171] 2009AsTeGeSiSbBPo 7
Leach [172] 2009AsTeGeSiSbBPo 7
Manning [173] 2009AsTeGeSiSbBPo 7
McMurray & Fay [174] 2009AsTeGeSiSbBAt 7
Reger, Goode & Ball [175] 2009AsTeGeSiSbB 6
Schnepp [176] 2009AsTeGeSiSbBPoAt 8
Shubert & Leyba [177] 2009AsTeGeSiSbB 6
Whitten et al. [178] 2009AsTeGeSiSbBAt 7
Aldinger & Weberruss [179] 2010AsTeGeSiSbB 6
Banks et al. [180] 2010AsTeGeSiSbB 6
Fayer [181] 2010AsTeGeSiSbBPoAt 8
Gray [182] 2010AsTeGeSiSbBPo 7
Groysman [183] 2010AsTeGeSiSbPo 6
Halka & Nordstrom [184] 2010AsTeGeSiSbBPo 7
Lombi E & Holm PE [185] 2010AsTeGeSiSbBPoAt 8
NEST Association [186] 2010AsTeGeSiSbBAt 7
RCCS [187] 2010AsTeGeSiSbBPoAtSeCBiPSn 13
Senese [188] 2010AsTeGeSiSb(B)PoAt(Se)C 9
Weiner [189] 2010AsTeGeSiSbBPo 7
Barbalace [190] 2011AsTeGeSiSbBPo 7
Encyclopædia Britannica Online [191] 2011AsTeGeSiSbB(Po)(At) 7
Helmenstine [192] 2011AsTeGeSiSbB(Po) 6.5
Moore [193] 2011AsTeGeSiSbBAt 7
QA International [194] 2011AsTeGeSiSbBSe 7
ElementArsenicTellu­riumGerma­niumSiliconAnti­monyBoronPolo­niumAsta­tineSele­niumAlu­miniumCarbonBis­muthPhos­phorusBeryl­liumTinSulfurLiver­moriumIodineOther

There is an average of 7.15 elements per metalloid list.

Appearance frequency clusters

Clusters of elements and their appearance in the sources Metalloid cluster frequencies.png
Clusters of elements and their appearance in the sources

Elements cited in the listed sources (as of August 2011; n = 194) have appearance frequencies that occur in clusters of comparable values. The diamonds in the graph mark the mean appearance frequency of each cluster.

The resulting geometric trend line has the formula y = 199.47e−0.7423x and an R2 value of 0.9962. [n 3]

Elements regarded as metalloids

The elements commonly classified as metalloids are boron, silicon, germanium, arsenic, antimony and tellurium. [n 4] The status of polonium and astatine is not settled. Most authors recognise one or the other, or both, as metalloids; Herman, Hoffmann and Ashcroft, on the basis of relativistic modelling, predict astatine will be a monatomic metal. [n 5] One or more of carbon, aluminium, phosphorus, selenium, tin or bismuth, these being periodic table neighbours of the elements commonly classified as metalloids, are sometimes recognised as metalloids. [n 6] Selenium, in particular, is commonly designated as a metalloid in environmental chemistry [n 7] on account of similarities in its aquatic chemistry with that of arsenic and antimony. [n 8] There are fewer references to beryllium, in spite of its periodic table position adjoining the dividing line between metals and nonmetals. Isolated references in the literature can also be found to the categorisation of other elements as metalloids. These elements include: hydrogen, nitrogen, [n 9] sulfur, [n 10] zinc, [n 11] gallium, [n 12] iodine, [n 13] lead, [n 14] and radon [n 15] (citations are for references other than those listed above).

Notes

  1. Lack of a rigorous definition:
    • Goldsmith RH 1982, 'Metalloids', Journal of Chemical Education, vol. 59, no. 6, pp. 526–527, doi:10.1021/ed059p526
    • Hawkes SJ 2001, 'Semimetallicity', Journal of Chemical Education, vol. 78, no. 12, pp. 1686–87, doi:10.1021/ed078p1686
  2. For a related commentary see also: Vernon RE 2013, 'Which Elements Are Metalloids?', Journal of Chemical Education, vol. 90, no. 12, pp. 1703–1707, doi:10.1021/ed3008457
  3. The R2 value is a measure of how close a formula fits a set of data points. Values fall between 0.0 and 1.0, with those near 1.0 indicating a good fit.
  4. Elements commonly classified as metalloids:
    • Goldsmith RH 1982, 'Metalloids', Journal of Chemical Education, vol. 59, no. 6, pp. 526–7 (526), doi:10.1021/ed059p526
    • Mann JB, Meek TL & Allen LC 2000, 'Configuration energies of the main group elements', Journal of the American Chemical Society, vol. 122, no. 12, pp. 2780–3 (2783), doi:10.1021ja992866e: Mann et al. refer to these elements as 'the recognized metalloids'.
    • Kotz JC, Treichel P & Weaver GC 2009, Chemistry and Chemical Reactivity, 7th ed., Brooks/Cole, Belmont, California, ISBN   1439041318
  5. Polonium and astatine:
  6. Carbon, aluminium, phosphorus, selenium, tin, bismuth:
    • Rochow EG 1966, The metalloids, DC Heath and Company, Boston, pp. 7–8
    • Cobb HM 2012, Dictionary of Metals, ASM International, Materials Park, OH, p. 145, ISBN   9781615039784
    • Walker CH 2012, Organic Pollutants: An Ecotoxicological Perspective, 2nd ed., CRC Press, Boca Raton, FL, p. 163, ISBN   9781420062588
    • Whiten K, Davis R, Peck L & Stanley G 2014, Chemistry, 10th ed., Brooks/Cole Cengage Learning, Belmont, CA, p. 134, ISBN   9781133610663
  7. Selenium as a metalloid in environmental chemistry:
    • Meyer JS, Adams WJ, Brix KV, Luoma SM, Mount DR, Stubblefield WA & Wood CM (eds) 2005, Toxicity of dietborne metals to aquatic organisms, Proceedings from the Pellston Workshop on Toxicity of Dietborne Metals to Aquatic Organisms, 27 July – 1 August 2002, Fairmont Hot Springs, British Columbia, Canada, Society of Environmental Toxicology and Chemistry, Pensacola, Florida, p. 284, ISBN   1880611708
    • Weiner ER 2013, Applications of Environmental Aquatic Chemistry: A Practical Guide, 3rd ed., CRC Press, Boca Raton, FL, p. 181, ISBN   9781439853320
  8. Similarities in the aquatic chemistry of selenium, arsenic, and antimony:
    • US Environmental Protection Agency 1988, Ambient aquatic life water quality criteria for antimony (III), draft, Office of Research and Development, Environmental Research Laboratories, Washington, p. 1
    • De Zuane J 1997, Handbook of drinking water quality, 2nd ed., John Wiley & Sons, New York, p. 93, ISBN   047128789X
    • Uden PC 2005, 'Speciation of selenium,' in R Cornelis, J Caruso, H Crews & K Heumann (eds), Handbook of elemental speciation II: Species in the environment, food, medicine and occupational health, John Wiley & Sons, Chichester, pp. 346–65 (347–8), ISBN   0470855983
    • Dev N 2008, 'Modelling selenium fate and transport in Great Salt Lake Wetlands' PhD dissertation, University of Utah, ProQuest, Ann Arbor, Michigan, pp. 2–3, ISBN   054986542X
  9. Nitrogen: Rausch MD 1960, 'Cyclopentadienyl compounds of metals and metalloids', Journal of Chemical Education, vol. 37, no. 11, pp. 568–78, doi:10.1021/ed037p568
  10. Sulfur:
    • Chalmers B 1959, Physical metallurgy, John Wiley & Sons, New York, p. 72
    • US Bureau of Naval Personnel 1965, Shipfitter 3 & 2, US Government Printing Office, Washington, p. 26
  11. Zinc: Siebring BR 1967, Chemistry, MacMillan, New York, p. 613
  12. Gallium: Wiberg N 2001, Inorganic chemistry, Academic Press, San Diego, p. 282, ISBN   0123526515
  13. Iodine:
    • Friend JN 1953, Man and the chemical elements, 1st ed., Charles Scribner's Sons, New York, p. 68
    • Rausch MD 1960, 'Cyclopentadienyl compounds of metals and metalloids', Journal of Chemical Education, vol. 37, no. 11, pp. 568–78, doi:10.1021/ed037p568
  14. Lead: Murray JF 1928, 'Cable-sheath corrosion', Electrical World, vol. 92, Dec 29, pp. 1295–7 (1295)
  15. Radon:
    • Hampel CA & Hawley GG 1966, The encyclopedia of chemistry, 3rd ed., Van Nostrand Reinhold, New York,p. 950
    • Stein L 1985, 'New evidence that radon is a metalloid element: ion-exchange reactions of cationic radon', Journal of the Chemical Society, Chemical Communications, vol. 22, pp. 1631–2, doi:10.1039/C39850001631
    • Stein L 1987, 'Chemical properties of radon' in PK Hopke (ed.) 1987, Radon and its decay products: Occurrence, properties, and health effects, American Chemical Society, Washington DC, pp. 240–51 (240, 247–8), ISBN   0841210152

Related Research Articles

<span class="mw-page-title-main">Astatine</span> Chemical element, symbol At and atomic number 85

Astatine is a chemical element; it has symbol At and atomic number 85. It is the rarest naturally occurring element in the Earth's crust, occurring only as the decay product of various heavier elements. All of astatine's isotopes are short-lived; the most stable is astatine-210, with a half-life of 8.1 hours. Consequently, a solid sample of the element has never been seen, because any macroscopic specimen would be immediately vaporized by the heat of its radioactivity.

<span class="mw-page-title-main">Periodic table</span> Tabular arrangement of the chemical elements ordered by atomic number

The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows ("periods") and columns ("groups"). It is an icon of chemistry and is widely used in physics and other sciences. It is a depiction of the periodic law, which states that when the elements are arranged in order of their atomic numbers an approximate recurrence of their properties is evident. The table is divided into four roughly rectangular areas called blocks. Elements in the same group tend to show similar chemical characteristics.

In chemistry, a transition metal is a chemical element in the d-block of the periodic table, though the elements of group 12 are sometimes excluded. The lanthanide and actinide elements are called inner transition metals and are sometimes considered to be transition metals as well.

The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode, at:

A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on which elements are metalloids. Despite the lack of specificity, the term remains in use in the literature of chemistry. Metalloids typically have a metallic appearance but are brittle and not as malleable as metals.

<span class="mw-page-title-main">Nonmetal</span> Category of chemical elements

Nonmetals in chemistry or non-metallic elements are chemical elements that have high electronegativity and mostly lack distinctive metallic properties. They range from colorless gases like hydrogen to shiny crystals like iodine. Physically, they are usually lighter than metals and are often poor conductors of heat and electricity. Since nonmetals have high electronegativity they usually attract electrons in a chemical bond with another element, and their oxides tend to be acidic.

<span class="mw-page-title-main">Noble metal</span> Metallic elements that are nearly chemically inert

A noble metal is ordinarily regarded as a metallic chemical element that is generally resistant to corrosion and is usually found in nature in its raw form. Gold, platinum, and the other platinum group metals are most often so classified. Silver, copper, and mercury are sometimes included as noble metals, but each of these usually occurs in nature combined with sulfur.

A period 3 element is one of the chemical elements in the third row of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the elements as their atomic number increases: a new row is begun when chemical behavior begins to repeat, meaning that elements with similar behavior fall into the same vertical columns. The third period contains eight elements: sodium, magnesium, aluminium, silicon, phosphorus, sulfur, chlorine and argon. The first two, sodium and magnesium, are members of the s-block of the periodic table, while the others are members of the p-block. All of the period 3 elements occur in nature and have at least one stable isotope.

In chemistry, an interhalogen compound is a molecule which contains two or more different halogen atoms and no atoms of elements from any other group.

<span class="mw-page-title-main">Types of periodic tables</span> Different forms of the table of elements

Since Dimitri Mendeleev formulated the periodic law in 1871, and published an associated periodic table of chemical elements, authors have experimented with varying types of periodic tables including for teaching, aesthetic or philosophical purposes.

There are currently 118 known chemical elements with a wide range of physical and chemical properties. Amongst this diversity, scientists have found it useful to apply names for various sets of elements that have similar properties, to varying degrees. Many of these sets are formally recognized by the standards body IUPAC.

A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term seems to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-block, p-block, d-block, f-block and g-block.

The origin and usage of the term metalloid is convoluted. Its origin lies in attempts, dating from antiquity, to describe metals and to distinguish between typical and less typical forms. It was first applied to metals that floated on water, and then more popularly to nonmetals. Only recently, since the mid-20th century, has it been widely used to refer to elements with intermediate or borderline properties between metals and nonmetals.

The chemical elements can be broadly divided into metals, metalloids, and nonmetals according to their shared physical and chemical properties. All metals have a shiny appearance ; are good conductors of heat and electricity; form alloys with other metals; and have at least one basic oxide. Metalloids are metallic-looking brittle solids that are either semiconductors or exist in semiconducting forms, and have amphoteric or weakly acidic oxides. Typical nonmetals have a dull, coloured or colourless appearance; are brittle when solid; are poor conductors of heat and electricity; and have acidic oxides. Most or some elements in each category share a range of other properties; a few elements have properties that are either anomalous given their category, or otherwise extraordinary.

The dividing line between metals and nonmetals can be found, in varying configurations, on some representations of the periodic table of the elements. Elements to the lower left of the line generally display increasing metallic behaviour; elements to the upper right display increasing nonmetallic behaviour. When presented as a regular stair-step, elements with the highest critical temperature for their groups lie just below the line.

<span class="mw-page-title-main">Post-transition metal</span> Category of metallic elements

The metallic elements in the periodic table located between the transition metals to their left and the chemically weak nonmetallic metalloids to their right have received many names in the literature, such as post-transition metals, poor metals, other metals, p-block metals and chemically weak metals. The most common name, post-transition metals, is generally used in this article.

<span class="mw-page-title-main">Heavy metals</span> Loosely defined subset of elements that exhibit metallic properties

Heavy metals are generally defined as metals with relatively high densities, atomic weights, or atomic numbers. The criteria used, and whether metalloids are included, vary depending on the author and context. In metallurgy, for example, a heavy metal may be defined on the basis of density, whereas in physics the distinguishing criterion might be atomic number, while a chemist would likely be more concerned with chemical behaviour. More specific definitions have been published, none of which have been widely accepted. The definitions surveyed in this article encompass up to 96 out of the 118 known chemical elements; only mercury, lead and bismuth meet all of them. Despite this lack of agreement, the term is widely used in science. A density of more than 5 g/cm3 is sometimes quoted as a commonly used criterion and is used in the body of this article.

References

  1. Simmons LM 1947, 'A modification of the periodic table', Journal of Chemical Education, December, pp. 588–591 (589) doi : 10.1021/ed024p588
  2. Pauling, L (1949). General chemistry. WH Freeman, San Francisco. p. 65.
  3. Szabó ZG & Lakatos B 1954, 'The new form of the periodic table and new periodic functions', Acta Chimica Academiae Scientiarum Hungaricae, IV 2–4, pp. 129–149 (133)
  4. Dull CE, Metcalfe HC & Williams JE 1958, Modern chemistry, Henry Holt and Company, New York, pp. 59–60, 62
  5. Frey PR 1958, College chemistry, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, p. 118
  6. Johnstone RT & Miller SE 1960, Occupational diseases and industrial medicine, Saunders, Philadelphia, p. 262
  7. Edwards JO, Ellison HR, Luaro CG & Lorand JP 1961, 'Factors which influence the stability of anionic complexes', in S Kirschner, Advances in the chemistry of the coordination compounds: Proceedings of the sixth international conference on coordination chemistry, Macmillan, New York, pp. 230–237 (230)
  8. Bond GC 1962, Catalysis by metals, Academic Press, London, p. 8
  9. Swift EH & Schaefer WP 1962, Qualitative elemental analysis, WH Freeman, San Francisco, p. 100
  10. Hoffman KB 1963, Chemistry for the applied sciences, Prentice-Hall, Englewood Cliffs, NJ, p. 34
  11. Nathans MW 1963, Elementary chemistry, Prentice-Hall, Englewood Cliffs, NJ, p. 122
  12. Bailar JC, Moeller T & Kleinberg J 1965, University chemistry, DC Heath, Boston, p. 332
  13. Selwood PW 1965, General chemistry, 4th ed., Holt, Rinehart and Winston, New York, inside back cover
  14. Bassett LG, Bunce SC, Carter AE, Clark HM & Hollinger HB 1966, Principles of chemistry, Prentice-Hall, Englewood Cliffs, NJ, pp. 127, 602
  15. Hultgren HH 1966, 'Metalloids, in GL Clark & GG Hawley (eds), The encyclopedia of inorganic chemistry, 2nd ed., Reinhold Publishing, New York, pp. 648–649 (648)
  16. Metcalfe HC, Williams JE & Castka JF 1966, Modern chemistry, Hollt, Rinehart and Winston, New York, pp. 466–67
  17. Rochow EG 1966, The metalloids, DC Heath, Boston, pp. 3, 7–8
  18. Mahan BH 1967, University chemistry, Addison-Wesley, Reading, MA, p. 448
  19. Paul MA, King EJ & Farinholt LH 1967, General chemistry, Harcourt, Brace & World, New York, p. 135
  20. Siebring BR 1967, Chemistry, Macmillan, New York, p. 70
  21. Cotton FA & Lynch LD 1968, Chemistry: An investigative approach, Houghton Mifflin, Boston, p. 226
  22. Dunstan S 1968, Principles of chemistry, D Van Nostrand, Princeton, NJ, pp. 310, 409
  23. Tyrell LWM & Warren RK 1968, Principles of chemical science: A student's text, Edward Arnold (Publishers), n.p., p. 111
  24. Williams AL, Embree HD & DeBey HJ 1968, Introduction to chemistry, Addison-Wesley, Reading MA, inside back cover
  25. Chedd G 1969, Half-way elements, Aldus Books, London, p. 24
  26. Hägg G 1969, General and inorganic chemistry, John Wiley & Sons, New York, p. 92
  27. Holum JR 1969, Introduction to principles of chemistry, John Wiley & Sons, New York, p. 59
  28. Hunter D 1969, The diseases of occupations, Little, Brown, & Co., Boston, p. 232
  29. Moody BJ 1969, Comparative inorganic chemistry, 2nd ed., Edward Arnold, London, pp. 67–68
  30. Dickerson RE, Gray HB & Haight GP 1970, Chemical principles, WA Benjamin, New York, p. 160
  31. Hardwick ER & Knobler CM 1979, Chemistry: Man and matter, Xerox College, Waltham, MA, inside back cover
  32. Williams AL, Embree HD & DeBay HJ 1970, General chemistry, Addison-Wesley, Reading, MA, p. 55
  33. Dickson TR 1971, Introduction to chemistry, John Wiley & Sons, New York, p. 160
  34. Emsley J 1971, The inorganic chemistry of the non-metals, Methuen Educational, London, p. 1
  35. Nitz OW & Dhonau CA 1971, Chemistry: A brief introduction, Willard Grant, Boston, p. 64
  36. Pimentel GC & Spratley RD 1971, Understanding chemistry, Holden-Day, San Francisco, p. 664
  37. Barrow GM 1972, General chemistry, Wadsworth, Belmont CA, p. 162
  38. Choppin GR & Johnsen RH 1972, Introductory chemistry, Addison-Wesley, Reading MA, p. 346
  39. Horvath AL 1973, 'Critical temperature of elements and the periodic system' Journal of Chemical Education, vol 50, no. 5, pp. 335–336 (336)
  40. Pascoe KJ 1973, Properties of materials for electrical engineers, John Wiley & Sons, p. 7
  41. Seager SL & Stoker HS 1973, Chemistry: A science for today, Scott, Foresman and Company, Glenview, Illinois, p. 58
  42. Allen TL & Keefer RM 1974, Chemistry: Experiment and theory, Harper & Row, New York, p. 235
  43. Andrews DH 1974, Chemistry: A humanistic view, McGraw-Hill, New York, p. 217
  44. Day RA & Johnson RC 1974, General chemistry, Prentice-Hall, Englewood Cliffs, NJ, p. 145
  45. Dickson TR 1974, Understanding chemistry: From atoms to attitude, John Wiley & Sons, New York, p. 32
  46. Duffy JA 1974, General inorganic chemistry, 2nd ed., Longman, London, p. 53
  47. Fuller EC 1974, Chemistry and man's environment, Houghton Mifflin, Boston, p. 186
  48. Nordmann J 1974, What is chemistry: a chemical view of nature, Harper & Row, New York, p. 152
  49. O'Connor RF 1974, Chemical principles and their biological implications, Hamilton Publishing, Santa Barbara, CA, p. 84
  50. Rock PA & Gerhold GA 1974, Chemistry: Principles and applications, WB Saunders, Philadelphia, p. 535
  51. Pauling L & Pauling P 1975, Chemistry, WH Freeman, San Francisco, p. 114
  52. Hearst JE & Ifft JB 1976, Contemporary chemistry, WH Freeman, San Francisco, p. 104
  53. Tyler Miller G 1976, Chemistry: A contemporary approach, Wadsworth, Belmont CA, p. 44
  54. Waser J, Trueblood KN & Knobler CM 1976, Chem one, McGraw-Hill, New York, p. 245
  55. Bloomfield MM 1977, Chemistry and the living organism, John Wiley & Sons, New York, p. 126
  56. Ucko DA 1977, Living chemistry, Academic Press, New York, p. 32
  57. Hill GC & Holman JS 1978, Chemistry in context, Thomas Nelson & Sons, Sunbury-on-Thames, Middlesex, p. 27
  58. Coxon JM, Fergusson JE & Phillips LF 1980, First year chemistry, Edward Arnold, London, p. 21
  59. Warrena JL & Geballe TH 1981, 'Research opportunities in new energy-related materials', Materials Science and Engineering, vol. 50, no.2, Oct, pp. 149–198, p. 161?
  60. Walters D 1982, Chemistry, Franklin Watts Science World series, Franklin Watts, London, p. 33
  61. Edwards PP & Sienko MJ, 'On the occurrence of metallic character in the periodic table of the elements', Journal of Chemical Education, vol. 60, no. 9, pp. 691–696 (692)
  62. Holtzclaw HF, Robinson WR & Nebergall WH 1984, General chemistry, 7th ed., DC Heath, Lexington, p. 193
  63. Boikess RS & Edelson E 1985, Chemical principles, 3rd ed., Harper & Row, New York, p. 35
  64. Peters EI 1986, Introduction to chemical principles, 4th ed., Saunders College, Philadelphia, p. 105
  65. Hibbert DB & James AM 1987, Macmillan dictionary of chemistry, Macmillan, London, p. 300
  66. Jones MM, Johnston DO, Netterville JT, Wood JL & Joeston MD 1987, Chemistry & society, 5th ed., Saunders College, Philadelphia, p. 84
  67. McQuarrie DA & Rock PA 1987, General chemistry, 3rd ed., WH Freeman, San Francisco, p. 84
  68. Wulfsberg G 1987, Principles of descriptive inorganic chemistry, Brooks/Cole, Monterey, CA, p. 201
  69. Thayer JS 1988, Organometallic chemistry: An overview, VCH, New York, p. 3
  70. Whitten KW, Gailey KD & Davis RE 1988, General chemistry with qualitative analysis, Saunders College, Philadelphia, p. 139
  71. Bailar JC, Moeller T, Kleinberg J, Guss CO, Catellion ME & Metz C 1989 Chemistry, 3rd ed., Harcourt Brace Jovanovich, San Diego, p. 742
  72. Gill R 1989, Chemical fundamentals of geology, Unwin Hyman, London, p. 292
  73. Malone LJ 1989, Basic concepts of chemistry, John Wiley and Sons, New York, p. 135
  74. Petrucci RK 1989, General chemistry: Principles and modern applications, 5th ed., Macmillan, New York, p. 284
  75. Puddephatt RJ & Monaghan PK 1989, The periodic table of the elements, Clarendon Press, Oxford, p.40
  76. Scott A 1989, Molecular machinery: The principles and powers of chemistry, Basil Blackwell, Oxford, p. 18
  77. Segal BG 1989, Chemistry: experiment and theory, 2nd ed., Wiley, New York, p. 965
  78. Oxtoby DW, Nachtrieb NH & Freeman WA 1990, Chemistry: Science of change, Saunders College, Philadelphia, inside front cover
  79. Atkins PW & Beran JA 1990, General chemistry, 2nd ed., Scientific American Books, New York, p. 44
  80. Ebbing DD & Wrighton MS 1993, General chemistry, 4th ed., Houghton Mifflin, Boston, p. 58
  81. Zumdahl SS 1993, Chemistry, 3rd ed., Lexington MA, p. 327
  82. Birk JP 1994, Chemistry, Houghton Mifflin, Boston, inside cover
  83. Smith R 1994, Conquering chemistry, 2nd ed., McGraw-Hill, New York, p. 25
  84. Academic American Encyclopedia 1996, vol. 13, 'metalloids', Grolier, Danbury, CT, p. 328
  85. Brady JE & Holum JR 1996, Chemistry: The study of matter and its changes, John Wiley & Sons, New York, p. 59
  86. Harrison RM & de Mora SJ 1996, Introductory chemistry for the environmental sciences, 2nd ed., Cambridge University, Cambridge, p. 150
  87. Hook CC & Post R 1996, Chemistry: Concepts and problems, 2nd ed., John Wiley & Sons, New York, p. 297
  88. Atkins P & Jones L 1997, Chemistry: Molecules, matter and change, 3rd ed., WH Freeman, New York, p. 15
  89. Dayah M 1997, Dynamic Periodic Table, viewed 14 July 2011
  90. Mingos DMP 1998, Essential trends in inorganic chemistry, Oxford University, Oxford, p. 202
  91. Joesten MD & Wood JL 1999, World of chemistry: Essentials, 2nd ed., Saunders College/Harcourt Brace, Fort Worth, p. 57
  92. Kremer P 1999, ChemGlobe – Periodic table of the elements, viewed 14 July 2011
  93. Thompson R, 1999, 'Re: What is the metalloid line and where is it located on the Periodic Table?', MadSci Network
  94. Umland JB & Bellama JM 1999, General chemistry, 3rd ed., Brooks/Cole, Pacific Grove, inside front cover
  95. Callister WD 2000, Materials science and engineering: An introduction, John Wiley & Sons, New York, p. 17
  96. Enloe CL 2000, Physical science: What the technology professional needs to know, John Wiley and Sons, New York, p. 93
  97. Mann JB, Meek TL and Allen LC 2000, 'Configuration energies of the main group elements', Journal of the American Chemical Society, vol. 122, pp. 2780–2783
  98. Phillips JS, Stozak VS & Wistrom C 2000, Chemistry: Concepts and applications, Glencoe/McGraw Hill, Columbus OH, p. 93
  99. Ryan L 2000, Advanced chemistry for you, Nelson Thornes, Cheltenham, p. 92
  100. Hawkes SJ 2001, 'Semimetallicity', Journal of Chemical Education, vol. 78, no. 12, pp. 1686–1686
  101. Lewis R & Evans W 2001, Chemistry, 2nd ed., Palgrave, Basingstoke, Hampshire, p. 212
  102. Masterton WL & Hurley N 2001, Chemistry: Principles and reactions, 4th ed., Harcourt College, Fort Worth, inside front cover
  103. Barrett J 2002, Atomic structure and periodicity, Wiley-Interscience, Hoboken, NJ, p. 105
  104. Chang R 2002, Chemistry, 7th ed., McGraw-Hill, New York, p. 46
  105. Harding C, Johnson DA & Janes R 2002, Elements of the p block, Royal Society of Chemistry, Cambridge, p. 210
  106. Johnson DA 2002, Metals and chemical change, Royal Society of Chemistry, Cambridge, p. 22
  107. Rodgers GE 2002, Descriptive inorganic, coordination, and solid-state chemistry, 2nd ed., Brooks/Cole Thomson, Australia, p. 235
  108. Szefer P 2002, Metals, metalloids and radionuclides in the Baltic Sea ecosystem, Elsevier, Amsterdam, p. 14
  109. Woodgate S 2002, GEN periodic table: Metals, metalloids, nonmetals, The University of Auckland
  110. Wright DA & Welbourn P 2002, Environmental toxicology, Cambridge University, Cambridge, p. 254
  111. e-encyclopedia 2003, Dorling Kindersley, London, p. 161
  112. Gupta CK 2003, Chemical metallurgy: principles and practice, Wiley-VCH, Weinheim, p. 4
  113. Hunt A 2003, Schaum's A-Z: Chemistry, McGraw-Hill, New York, p. 231
  114. Myers R 2003, The basics of chemistry, Greenwood, Westport CT, p. 68
  115. Williams LD 2003, Chemistry demystified, McGraw-Hill, New York, p. 151
  116. Atkins P 2004, Galileo's finger: the ten great ideas of science, Oxford University Press, Oxford, p. 159
  117. Cox PA 2004, Inorganic chemistry, 2nd ed., Bios Scientific, London, p. 27
  118. Gilbert TR, Kirss RV & Davies G 2004, Chemistry: The science in context, WW Norton, New York, inside front cover
  119. Reilly C 2004, The nutritional trace metals, Blackwell, Oxford, p. 5
  120. Ebbing DD & Gammon 2005, General chemistry, 8th ed., Houghton Mifflin, Boston, p. 58
  121. Fry M & Page E 2005, Catchup chemistry: For the life and medical sciences, Scion, Bloxham, Oxfordshire, p. 14
  122. Halliday D, Resnick R & Walker J 2005, Fundamentals of physics, 7th ed., John Wiley & Sons, New York, p. A-15
  123. Holler FJ & Selegue JP 2005, The periodic table of comic books, viewed 14 Jul 2011
  124. Kotz JC, Treichel P & Weaver GC 2005, Chemistry & chemical reactivity, 6th ed., Brooks Cole, Belmont, CA, p. 80
  125. Meyer JS (ed.) 2005, Toxicity of dietborne metals to aquatic organisms, Allen Press/ACG, place p. 282
  126. Orchin M 2005, The vocabulary and concepts of organic chemistry, John Wiley and Sons, New York, p. 20
  127. Swenson J 2005, 'Classification of noble gases' in Ask a scientist, Chemistry archive
  128. Baird C 2006, Chemistry in your life, 2nd ed., WH Freeman, New York, p. 81
  129. Blei I & Odian G 2006, General, organic and biochemistry: Connecting chemistry to your life, WH Freeman, New York, inside cover
  130. Brown L & Holme T 2006, Chemistry for engineering students, Thomson Brooks/Cole, Belmont, CA, p. 58
  131. Dashek WV & Harrison M 2006, Plant cell biology, Science Publishers, Enfield, NH, p. 20
  132. Finch J, Sinha R, Singh D & Saika A (eds) 2006, Encyclopedia of science, 3rd ed., Dorling Kindersley, London, p. 32
  133. Goldfrank LR & Flomenbaum N 2006, Goldfrank's toxicologic emergencies, McGraw-Hill, New York, p. 187
  134. Hatt C 2006, Scientists and their discoveries, Evans Brothers, London, p. 21
  135. Hérold A 2006, 'An arrangement of the chemical elements in several classes inside the periodic table according to their common properties', Comptes Rendus Chimie, vol. 9, pp. 148–153
  136. McMonagle D 2006, Chemistry: an illustrated guide to science, Infobase Publishing, New York, p. 26
  137. Rayner-Canham G & Overton T 2006, Descriptive inorganic chemistry, 4th ed., WH Freeman, New York, p. 29
  138. Silberberg MS 2006, Chemistry: The molecular nature of matter and change, 4th ed., McGraw-Hill, New York, p. 55
  139. Slade S 2006, Elements and the periodic table, The Rosen Publishing Group, New York, p. 16
  140. Wertheim J, Oxlade C & Stockley C 2006, The Usborne illustrated dictionary of chemistry, Usborne, London, p. 51
  141. Whitley K 2006, Periodic table: Metals, non-metals, and semi-metals, Chem Professor: Course outline, General chemistry, viewed 14 July 2011
  142. American Chemical Society, Interactive periodic table, viewed 14 July 2011
  143. Astruc D 2007, Organometallic chemistry and catalysis, Springer, Berlin. p. 312
  144. Casper JK 2007, Minerals: Gifts from the earth, Infobase, New York, p. 9
  145. Crystal D (ed.) 2007, 'metalloid', in The Penguin Concise Encyclopedia, 3rd ed., Penguin Books, London, p. 599
  146. DeGraff J 2007, Understanding and responding to hazardous substances at mine sites in the western United States, Geological Society of America, Boulder, Colordado, p. 26
  147. Joesten MD, Hogg JL & Castellion ME 2007, The world of chemistry: essentials, Thommson Higher Education, Belmont, CA, p. 58
  148. Lewis RJ 2007, Hawley's condensed chemical dictionary, 15th ed., Wiley-Interscience, New York p. 905
  149. Petty MC 2007, Molecular electronics: From principles to practice, vol. 22 of Wiley series in materials for electronic and optoelectronic applications, John Wiley and Sons, New York, p. 25
  150. Rösler J, Harders H & Bäker M 2007, Mechanical behaviour of engineering materials: metals, ceramics, polymers and composites, Springer, Berlin, p. 6
  151. Saunders N 2007, Exploring atoms and molecules, The Rosen Publishing Group, New York, p. 9
  152. Saunders N 2007, Exploring chemical reactions, The Rosen Publishing Group, New York, p. 9
  153. Shipman J, Wilson JD & Tood A 2007, An introduction to physical science, Houghton Mifflin, Boston, p. 297
  154. Bauer RC, Birk JP & Sawyer DJ 2008, Laboratory inquiry in chemistry, 3rd ed., Brooks/Cole, Belmont, inside back cover
  155. Clugston M & Flemming R 2008, Advanced chemistry, Oxford University Press, Oxford, p. 19
  156. Encyclopedia Columbia 2008, 'nonmetal', 6th ed., viewed 14 July 2011
  157. Ham B 2008, The periodic table, Infobase, New York, p. 66
  158. Kelter P, Mosher M & Scott A 2008, Chemistry: The practical science, Media enhanced edition, Houghton Mifflin, Boston, p. 261
  159. Masterton Wl & Hurley CN 2008, Chemistry: Principles and reactions, Brooks/Cole Cengage Learning, Belmont, CA, p. 31
  160. Merck 2008, Periodic table of the elements, viewed 14 July 2011
  161. Nicolaou KC & Montagnon T 2008, Molecules that changed the world: a brief history of the art and science of synthesis and its impact on society, Wiley-VCH, Weinheim, p. 4
  162. Řezanka T & Sigler K 2008, 'Biologically active compounds of semi-metals', in Atta-ur-Rahman (ed.), Studies in natural products chemistry, vol. 35, Elsevier, Amsterdam, pp. 835–922 (836)
  163. Tro NJ & Neu D 2008, Chemistry in focus: A molecular view of our world, Brooks/Cole, Belmont, CA, p. 75
  164. Vallero DA 2008, Fundamentals of air pollution, Academic Press/Elsevier, Burlington MA, p. 200
  165. Brown TL, Le May, HE, Bursten BE, Murphy & Woodward 2009, Chemistry: The central science, 11th ed., Pearson Education, Upper Saddle River, NJ, p. 49
  166. Burrows A, Holman J, Parsons A, Pilling G & Price G 2009, Chemistry3: Introducing inorganic, organic and physical chemistry, Oxford University, Oxford, p. 1192
  167. Castor-Perry S 2009, 'This week in science history – Mendeleev's periodic table', in Science Interviews, The Naked Scientists: Science Radio & Science Podcasts, viewed 14 July 2011
  168. Cracolice MS & Peters EI 2009, Introductory chemistry: An active learning approach, Brooks/Cole, Belmont, CA, p. 336
  169. Economou EN 2009, The physics of solids: Essentials and beyond, Springer, Heidelberg, p. 59
  170. Habashi F 2009, 'Metals: Typical and less typical, transition and inner transition,' Foundations of Chemistry, vol. 12, no. 1, pp. 31–39
  171. Hein M & Arena S 2009, Foundations of college chemistry, John Wiley and Sons, alternate 13th ed., New York, p. 49
  172. Leach M 2009, 'Periodic table chemical of substances under standard conditions', The chemogenesis webook, viewed 14 July 2011
  173. Manning P 2009, Chemical bonds, Infobase, New York, p. 105
  174. McMurray J & Fay RC 2009, General chemistry: Atoms first, Prentice Hall, Upper Saddle River, NJ, p. 767
  175. Reger DL, Goode SR & Ball DW 2009, Chemistry: Principles & practice, Brooks/Cole, Belmont, CA, p. 56
  176. Schnepp R 2009, Hazardous materials: Awareness and operations, Jones & Bartlett Learning, Sudbury, MA, p. 30
  177. Shubert D & Leyba J 2009, Chemistry and physics for nurse anesthesia: A student centred approach, Springer, NY, p. 41
  178. Whitten KW, Davis RE, Peck ML, Stanley GG 2009, Chemistry, 9th ed. Revised, Brooks/Cole, Belmont, CA, p. 134
  179. Aldinger F & Weberruss VA 2010, Advanced ceramics and future materials: An introduction to structures, properties, technologies, methods, Wiley-VCH, Weinheim, p. 49
  180. Banks AJ, Bollom MS, Holmes JL, Jacobsen JJ, Kotz JC & Moore JW 2010, Periodic table live!, Division of Chemical Education, viewed 14 July 2011
  181. Fayer MD 2010, Absolutely small: How quantum theory explains our everyday world, American Management Association, New York, p. 161
  182. Gray T 2010, Metalloids (7), viewed 2 June 2021
  183. Groysman A 2009, Corrosion for everybody, Springer, Dordrecht, p. 4
  184. Halka M & Nordstrom B 2010, Nonmetals, Infobase, New York, p. xiv
  185. Lombi E & Holm PE 2010, 'Metalloids, soil chemistry and the environment', in TP Jahn (ed.), MIPS and their role in the exchange of metalloids, Landes Bioscience, Austin< TX, 33–46(33)
  186. National Earth Science Teachers Association 2010, 'Metals, nonmetals, & metalloids', Windows to the universe, viewed 14 July 2011
  187. Research Centre for Computational Science 2010, The periodic table of the elements, Okazaki Research Facilities, National Institutes of Natural Sciences, Aichi, Japan, viewed 14 July 2011
  188. Senese FA 2010, Metals, nonmetals and metalloids, viewed 14 July 2011
  189. Weiner ER 2010, Applications of environmental aquatic chemistry: A practical guide, 2nd ed., CRC Press, Boca Raton, Florida, p. 109
  190. Barbalace KL 2011, Periodic table of elements, viewed 14 July 2011
  191. "Metalloid". Encyclopædia Britannica Online . 2011. Retrieved 14 July 2011.
  192. Helmenstine AM 2011, Metalloids or semimetals: Properties of element groups, viewed 14 July 2011
  193. Moore JT 2011, The periodic table: metals, nonmetals, and metalloids, dummies.com, viewed 14 July 2011
  194. QA International 2011, Merriam-Webster Visual dictionary online, viewed 14 July 2011