Electron affinity (data page)

Last updated

This page deals with the electron affinity as a property of isolated atoms or molecules (i.e. in the gas phase). Solid state electron affinities are not listed here.

Contents

Elements

Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion. The latter can be regarded as the ionization energy of the –1 ion or the zeroth ionization energy. [1] Either convention can be used. [2]

Negative electron affinities can be used in those cases where electron capture requires energy, i.e. when capture can occur only if the impinging electron has a kinetic energy large enough to excite a resonance of the atom-plus-electron system. Conversely electron removal from the anion formed in this way releases energy, which is carried out by the freed electron as kinetic energy. Negative ions formed in these cases are always unstable. They may have lifetimes of the order of microseconds to milliseconds, and invariably autodetach after some time.

Z Element NameElectron affinity (eV)Electron affinity (kJ/mol) References
11H Hydrogen 0.754 195(19)72.769(2) [3]
12H Deuterium 0.754 67(4)72.814(4) [4]
2He Helium −0.5(2)−48(20)est. [5]
3Li Lithium 0.618 049(22)59.632 6(21) [6]
4Be Beryllium −0.5(2)−48(20)est. [5]
5B Boron 0.279 723(25)26.989(3) [7]
612C Carbon 1.262 122 6(11)121.776 3(1) [8]
613CCarbon1.262 113 6(12)121.775 5(2) [8]
7N Nitrogen −0.07−6.8 [5]
816O Oxygen 1.461 112 97(9)140.975 970(9) [9]
817OOxygen1.461 108(4)140.975 5(3) [10]
818OOxygen1.461 105(3)140.975 2(3) [10]
9F Fluorine 3.401 189 8(24)328.164 9(3) [11] [12]
10Ne Neon −1.2(2)−116(19)est. [5]
11Na Sodium 0.547 926(25)52.867(3) [13]
12Mg Magnesium −0.4(2)−40(19)est. [5]
13Al Aluminium 0.432 83(5)41.762(5) [14]
14Si Silicon 1.389 521 2(8)134.068 4(1) [15]
15P Phosphorus 0.746 609(11)72.037(1) [16]
1632S Sulfur 2.077 104 2(6)200.410 1(1) [15]
1634SSulfur2.077 104 5(12)200.410 1(2) [17]
17Cl Chlorine 3.612 725(28)348.575(3) [18]
18Ar Argon −1.0(2)−96(20)est. [5]
19K Potassium 0.501 459(13)48.383(2) [19]
20Ca Calcium 0.024 55(10)2.37(1) [20]
21Sc Scandium 0.179 380(23)17.307 6(22) [21]
22Ti Titanium 0.075 54(5)7.289(5) [22]
23V Vanadium 0.527 66(20)50.911(20) [23]
24Cr Chromium 0.675 928(27)65.217 2(26) [21]
25Mn Manganese −0.5(2)−50(19)est. [5]
26Fe Iron 0.153 236(35)14.785(4) [24]
27Co Cobalt 0.662 255(47)63.897 9(45) [25]
28Ni Nickel 1.157 16(12)111.65(2) [26]
29Cu Copper 1.235 78(4)119.235(4) [27]
30Zn Zinc −0.6(2)−58(20)est. [5]
31Ga Gallium 0.301 166(15)29.058 1(15) [28]
32Ge Germanium 1.232 676 4(13)118.935 2(2) [29]
33As Arsenic 0.804 8(2)77.65(2) [30]
34Se Selenium 2.020 604 7(12)194.958 7(2) [31]
35Br Bromine 3.363 588(3)324.536 9(3) [11]
36Kr Krypton −1.0(2)−96(20)est. [5]
37Rb Rubidium 0.485 916(21)46.884(3) [32]
38Sr Strontium 0.052 06(6)5.023(6) [33]
39Y Yttrium 0.311 29(22)30.035(21) [21]
40Zr Zirconium 0.433 28(9)41.806(9) [34]
41Nb Niobium 0.917 40(7)88.516(7) [35]
42Mo Molybdenum 0.747 23(8)72.097(8) [21]
43Tc Technetium 0.55(20)53(20)est. [36]
44Ru Ruthenium 1.046 27(2)100.950(3) [21]
45Rh Rhodium 1.142 89(20)110.27(2) [26]
46Pd Palladium 0.562 14(12)54.24(2) [26]
47Ag Silver 1.304 47(3)125.862(3) [27]
48Cd Cadmium −0.7(2)−68(20)est. [5]
49In Indium 0.383 92(6)37.043(6) [37]
50Sn Tin 1.112 070(2)107.298 4(3) [38]
51Sb Antimony 1.047 401(19)101.059(2) [39]
52Te Tellurium 1.970 875(7)190.161(1) [40]
53127I Iodine 3.059 046 5(37)295.153 1(4) [41]
53128IIodine3.059 052(38)295.154(4) [42]
54Xe Xenon −0.8(2)−77(20)est. [5]
55Cs Caesium 0.4715983(38)45.5023(4) [43]
56Ba Barium 0.144 62(6)13.954(6) [44]
57La Lanthanum 0.557 546(20)53.795(2) [45]
58Ce Cerium 0.600 160(27)57.906 7(26) [46]
59Pr Praseodymium 0.109 23(46)10.539(45) [47]
60Nd Neodymium 0.097 49(33)9.406(32) [47]
61Pm Promethium 0.12912.45 [48]
62Sm Samarium 0.16215.63 [48]
63Eu Europium 0.116(13)11.2(13) [49]
64Gd Gadolinium 0.212(30)20.5(29) [21]
65Tb Terbium 0.131 31(80)12.670(77) [47]
66Dy Dysprosium 0.015(3)1.45(30) [50]
67Ho Holmium 0.33832.61 [48]
68Er Erbium 0.31230.10 [48]
69Tm Thulium 1.029(22)99(3) [51]
70Yb Ytterbium −0.02−1.93est. [36]
71Lu Lutetium 0.238 8(7)23.04(7) [52]
72Hf Hafnium 0.178 0(7)17.18(7) [53]
73Ta Tantalum 0.328 859(23)31.730 1(22) [21]
74W Tungsten 0.816 26(8)78.76(1) [54]
75Re Rhenium 0.060 396(64)5.827 3(62) [55]
76Os Osmium 1.077 661(24)103.978 5(24) [21]
77Ir Iridium 1.564 057(12)150.908 6(12) [56]
78Pt Platinum 2.125 10(5)205.041(5) [57]
79Au Gold 2.308 610(25)222.747(3) [58]
80Hg Mercury −0.5(2)−48(20)est. [5]
81Tl Thallium 0.320 053(19)30.880 4(19) [59]
82Pb Lead 0.356 721(2)34.418 3(3) [60]
83Bi Bismuth 0.942 362(13)90.924(2) [61]
84Po Polonium 1.40(7)136(7)calc. [62]
85At Astatine 2.415 78(7)233.087(8) [63]
86Rn Radon −0.7(2)−68(20)est. [5]
87Fr Francium 0.48646.89est. [64] [36]
88Ra Radium 0.109.648 5est. [65] [36]
89Ac Actinium 0.3533.77est. [36]
90Th Thorium 0.607 69(6)58.633(6) [66]
91Pa Protactinium 0.5553.03est. [67]
92U Uranium 0.314 97(9)30.390(9) [68]
93Np Neptunium 0.4845.85est. [67]
94Pu Plutonium −0.50−48.33est. [67]
95Am Americium 0.109.93est. [67]
96Cm Curium 0.2827.17est. [67]
97Bk Berkelium −1.72−165.24est. [67]
98Cf Californium −1.01−97.31est. [67]
99Es Einsteinium −0.30−28.60est. [67]
100Fm Fermium 0.3533.96est. [67]
101Md Mendelevium 0.9893.91est. [67]
102No Nobelium −2.33−223.22est. [67]
103Lr Lawrencium −0.31−30.04est. [67]
111Rg Roentgenium 1.565151.0calc. [69]
113Nh Nihonium 0.6966.6calc. [70]
115Mc Moscovium 0.36635.3calc. [70]
116Lv Livermorium 0.77674.9calc. [70]
117Ts Tennessine 1.719165.9calc. [70]
118Og Oganesson 0.080(6)7.72(58)calc. [71]
119Uue Ununennium 0.66263.87calc. [64]
120Ubn Unbinilium 0.0212.03calc. [72]
121Ubu Unbiunium 0.5755calc. [36]

Molecules

The electron affinities Eea of some molecules are given in the table below, from the lightest to the heaviest. Many more have been listed by Rienstra-Kiracofe et al. (2002). The electron affinities of the radicals OH and SH are the most precisely known of all molecular electron affinities.

Molecule NameEea (eV)Eea (kJ/mol) References
Diatomics
16OH Hydroxyl 1.827 6488(11)176.3413(2) Goldfarb et al. (2005)
16OD1.825 53(4)176.137(5) Schulz et al. (1982)
C2 Dicarbon 3.269(6)315.4(6) Ervin & Lineberger (1991)
BOBoron oxide2.508(8)242.0(8) Wenthold et al. (1997)
NO Nitric oxide 0.026(5)2.5(5) Travers, Cowles & Ellison (1989)
O2 Dioxygen 0.450(2)43.42(20) Schiedt & Weinkauf (1995)
32SHSulfhydryl2.314 7283(17)223.3373(2) Chaibi et al. (2006)
F2 Difluorine 3.08(10)297(10) Janousek & Brauman (1979)
Cl2 Dichlorine 2.35(8)227(8) Janousek & Brauman (1979)
Br2 Dibromine 2.53(8)244(8) Janousek & Brauman (1979)
I2 Diiodine 2.524(5)243.5(5) Zanni et al. (1997)
IBr Iodine monobromide 2.512(3)242.4(4) Sheps, Miller & Lineberger (2009)
LiCl Lithium chloride 0.593(10)57.2(10) Miller et al. (1986)
FeO Iron(II) oxide 1.4950(5)144.25(6) Kim, Weichman & Neumark (2015)
CN Cyano radical 3.862(4) [73]
Triatomics
NO2 Nitrogen dioxide 2.273(5)219.3(5) Ervin, Ho & Lineberger (1988)
O3 Ozone 2.1028(25)202.89(25) Novick et al. (1979)
SO2 Sulfur dioxide 1.107(8)106.8(8) Nimlos & Ellison (1986)
Larger polyatomics
CH2CHOVinyloxy1.8248(+2-6)176.07(+3-7) Rienstra-Kiracofe et al. (2002) after Mead et al. (1984)
C6H6 Benzene −0.70(14)−68(14) Ruoff et al. (1995)
C6H4O2 p-Benzoquinone 1.860(5)179.5(6) Schiedt & Weinkauf (1999)
BF3 Boron trifluoride 2.65(10)256(10) Page & Goode (1969)
HNO3 Nitric acid 0.57(15)55(14) Janousek & Brauman (1979)
CH3NO2 Nitromethane 0.172(6)16.6(6) Adams et al. (2009)
POCl3 Phosphoryl chloride 1.41(20)136(20) Mathur et al. (1976)
SF6 Sulfur hexafluoride 1.03(5)99.4(49) Troe, Miller & Viggiano (2012)
C2(CN)4 Tetracyanoethylene 3.17(20)306(20) Chowdhury & Kebarle (1986)
WF6 Tungsten hexafluoride 3.5(1)338(10) George & Beauchamp (1979)
UF6 Uranium hexafluoride 5.06(20)488(20) NIST chemistry webbook after Borshchevskii et al. (1988)
C60 Buckminsterfullerene 2.6835(6)258.92(6) Huang et al. (2014)

Second and third electron affinity

Z Element NameElectron affinity (eV)Electron affinity (kJ/mol) References
7NNitrogen-6.98-673 [74]
7N2−Nitrogen-11.09-1070 [74]
8OOxygen-7.71-744 [74]
15PPhosphorus-4.85-468 [74]
15P2−Phosphorus-9.18-886 [74]
16SSulfur-4.73-456 [74]
33AsArsenic-4.51-435 [74]
33As2−Arsenic-8.31-802 [74]
34SeSelenium-4.25-410 [74]

Bibliography

Specific molecules

Related Research Articles

<span class="mw-page-title-main">Photoemission spectroscopy</span> Examining a substance by measuring electrons emitted in the photoelectric effect

Photoemission spectroscopy (PES), also known as photoelectron spectroscopy, refers to energy measurement of electrons emitted from solids, gases or liquids by the photoelectric effect, in order to determine the binding energies of electrons in the substance. The term refers to various techniques, depending on whether the ionization energy is provided by X-ray, XUV or UV photons. Regardless of the incident photon beam, however, all photoelectron spectroscopy revolves around the general theme of surface analysis by measuring the ejected electrons.

Koopmans' theorem states that in closed-shell Hartree–Fock theory (HF), the first ionization energy of a molecular system is equal to the negative of the orbital energy of the highest occupied molecular orbital (HOMO). This theorem is named after Tjalling Koopmans, who published this result in 1934.

<span class="mw-page-title-main">Crystallographic defects in diamond</span>

Imperfections in the crystal lattice of diamond are common. Such defects may be the result of lattice irregularities or extrinsic substitutional or interstitial impurities, introduced during or after the diamond growth. The defects affect the material properties of diamond and determine to which type a diamond is assigned; the most dramatic effects are on the diamond color and electrical conductivity, as explained by the electronic band structure.

An electron bubble is the empty space created around a free electron in a cryogenic gas or liquid, such as neon or helium. They are typically very small, about 2 nm in diameter at atmospheric pressure.

Gold clusters in cluster chemistry can be either discrete molecules or larger colloidal particles. Both types are described as nanoparticles, with diameters of less than one micrometer. A nanocluster is a collective group made up of a specific number of atoms or molecules held together by some interaction mechanism. Gold nanoclusters have potential applications in optoelectronics and catalysis.

<span class="mw-page-title-main">Spartan (chemistry software)</span>

Spartan is a molecular modelling and computational chemistry application from Wavefunction. It contains code for molecular mechanics, semi-empirical methods, ab initio models, density functional models, post-Hartree–Fock models, and thermochemical recipes including G3(MP2) and T1. Quantum chemistry calculations in Spartan are powered by Q-Chem.

Penning ionization is a form of chemi-ionization, an ionization process involving reactions between neutral atoms or molecules. The Penning effect is put to practical use in applications such as gas-discharge neon lamps and fluorescent lamps, where the lamp is filled with a Penning mixture to improve the electrical characteristics of the lamps.

The helium hydride ion, hydridohelium(1+) ion, or helonium is a cation (positively charged ion) with chemical formula HeH+. It consists of a helium atom bonded to a hydrogen atom, with one electron removed. It can also be viewed as protonated helium. It is the lightest heteronuclear ion, and is believed to be the first compound formed in the Universe after the Big Bang.

<span class="mw-page-title-main">Hydrogen anion</span> Negative ion of hydrogen

The hydrogen anion, H, is a negative ion of hydrogen, that is, a hydrogen atom that has captured an extra electron. The hydrogen anion is an important constituent of the atmosphere of stars, such as the Sun. In chemistry, this ion is called hydride. The ion has two electrons bound by the electromagnetic force to a nucleus containing one proton.

<span class="mw-page-title-main">Positron annihilation spectroscopy</span> Non-destructive spectroscopy

Positron annihilation spectroscopy (PAS) or sometimes specifically referred to as positron annihilation lifetime spectroscopy (PALS) is a non-destructive spectroscopy technique to study voids and defects in solids.

Photofragment ion imaging or, more generally, Product Imaging is an experimental technique for making measurements of the velocity of product molecules or particles following a chemical reaction or the photodissociation of a parent molecule. The method uses a two-dimensional detector, usually a microchannel plate, to record the arrival positions of state-selected ions created by resonantly enhanced multi-photon ionization (REMPI). The first experiment using photofragment ion imaging was performed by David W Chandler and Paul L Houston in 1987 on the phototodissociation dynamics of methyl iodide (iodomethane, CH3I).

A trion is a bound state of three charged particles. A negatively charged trion in crystals consists of two electrons and one hole, while a positively charged trion consists of two holes and one electron. The binding energy of a trion is largely determined by the exchange interaction between the two electrons (holes). The ground state of a negatively charged trion is a singlet. The triplet state is unbound in the absence of an additional potential or sufficiently strong magnetic field.

<span class="mw-page-title-main">Hughes–Drever experiment</span>

Hughes–Drever experiments are spectroscopic tests of the isotropy of mass and space. Although originally conceived of as a test of Mach's principle, they are now understood to be an important test of Lorentz invariance. As in Michelson–Morley experiments, the existence of a preferred frame of reference or other deviations from Lorentz invariance can be tested, which also affects the validity of the equivalence principle. Thus these experiments concern fundamental aspects of both special and general relativity. Unlike Michelson–Morley type experiments, Hughes–Drever experiments test the isotropy of the interactions of matter itself, that is, of protons, neutrons, and electrons. The accuracy achieved makes this kind of experiment one of the most accurate confirmations of relativity.

Double ionization is a process of formation of doubly charged ions when laser radiation is exerted on neutral atoms or molecules. Double ionization is usually less probable than single-electron ionization. Two types of double ionization are distinguished: sequential and non-sequential.

<span class="mw-page-title-main">Lanthanum aluminate-strontium titanate interface</span>

The interface between lanthanum aluminate (LaAlO3) and strontium titanate (SrTiO3) is a notable materials interface because it exhibits properties not found in its constituent materials. Individually, LaAlO3 and SrTiO3 are non-magnetic insulators, yet LaAlO3/SrTiO3 interfaces can exhibit electrical metallic conductivity, superconductivity, ferromagnetism, large negative in-plane magnetoresistance, and giant persistent photoconductivity. The study of how these properties emerge at the LaAlO3/SrTiO3 interface is a growing area of research in condensed matter physics.

<span class="mw-page-title-main">Helium dimer</span> Chemical compound

The helium dimer is a van der Waals molecule with formula He2 consisting of two helium atoms. This chemical is the largest diatomic molecule—a molecule consisting of two atoms bonded together. The bond that holds this dimer together is so weak that it will break if the molecule rotates, or vibrates too much. It can only exist at very low cryogenic temperatures.

<span class="mw-page-title-main">John H. Malmberg</span> American physicist

John Holmes Malmberg was an American plasma physicist and a professor at the University of California, San Diego. He was known for making the first experimental measurements of Landau damping of plasma waves in 1964, as well as for his research on non-neutral plasmas and the development of the Penning–Malmberg trap.

<span class="mw-page-title-main">Penning–Malmberg trap</span> Electromagnetic device used to confine particles of a single sign of charge

The Penning–Malmberg trap, named after Frans Penning and John Malmberg, is an electromagnetic device used to confine large numbers of charged particles of a single sign of charge. Much interest in Penning–Malmberg (PM) traps arises from the fact that if the density of particles is large and the temperature is low, the gas will become a single-component plasma. While confinement of electrically neutral plasmas is generally difficult, single-species plasmas can be confined for long times in PM traps. They are the method of choice to study a variety of plasma phenomena. They are also widely used to confine antiparticles such as positrons and antiprotons for use in studies of the properties of antimatter and interactions of antiparticles with matter.

Linda Young is a distinguished fellow at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and a professor at the University of Chicago’s Department of Physics and James Franck Institute. Young is also the former director of Argonne’s X-ray Science Division.

<span class="mw-page-title-main">Negative methane</span> Negative ion of methane

Negative methane is the negative ion of methane, meaning that a neutral methane molecule captured an extra electron and became an ion with a total negative electric charge: CH4-. This kind of ion is also known as anion and are relevant in nature because negative ions have been observed to have important roles in several environments. For instance, they are confirmed in the interstellar space, in plasma, in the atmosphere of Earth and, in the ionosphere of Titan. Negative ions also hold the key for the radiocarbon dating method

References

  1. Wulfsberg, G. P. (2018). Foundations of Inorganic Chemistry. California: University Science Books. p. 362. ISBN   978-1-891389-95-5.
  2. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " Electron affinity ". doi : 10.1351/goldbook.E01977
  3. Lykke, K.R.; Murray, K.K.; Lineberger, W.C. (1991). "Threshold Photodetachment of H". Phys. Rev. A. 43 (11): 6104–7. Bibcode:1991PhRvA..43.6104L. doi:10.1103/PhysRevA.43.6104. PMID   9904944.
  4. Beyer M. & Merkt F. (2018). "Communication: Heavy-Rydberg states of HD and the electron affinity of the deuterium atom". J. Chem. Phys.149, 031102 doi:10.1063/1.5043186
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 Bratsch, S.G.; Lagowski, J.J. (1986). "Predicted stabilities of monatomic anions in water and liquid ammonia at 298.15 K.". Polyhedron. 5 (11): 1763–1770. doi:10.1016/S0277-5387(00)84854-8.
  6. Haeffler, G.; Hanstorp, D.; Kiyan, I.; Klinkmüller, A.E.; Ljungblad, U.; Pegg, D.J. (1996). "Electron affinity of Li: A state-selective measurement". Phys. Rev. A. 53 (6): 4127–31. arXiv: physics/9703013 . Bibcode:1996PhRvA..53.4127H. doi:10.1103/PhysRevA.53.4127. PMID   9913377. S2CID   568882.
  7. Scheer, M.; Bilodeau, R.C.; Haugen, H.K. (1998). "Negative ion of boron: An experimental study of the 3P ground state". Phys. Rev. Lett. 80 (12): 2562–65. Bibcode:1998PhRvL..80.2562S. doi:10.1103/PhysRevLett.80.2562.
  8. 1 2 Bresteau, D.; Drag, C.; Blondel, C. (2016). "Isotope shift of the electron affinity of carbon measured by photodetachment microscopy". Phys. Rev. A. 93 (1): 013414. Bibcode:2016PhRvA..93a3414B. doi:10.1103/PhysRevA.93.013414.
  9. Kristiansson, M.K.; Chartkunchand, K.; Eklund, G.; et al. (2022). "High-precision electron affinity of oxygen". Nat Commun. 13 (1): 5906. Bibcode:2022NatCo..13.5906K. doi: 10.1038/s41467-022-33438-y . PMC   9546871 . PMID   36207329.
  10. 1 2 Blondel, C.; Delsart, C.; Valli, C.; Yiou, S.; Godefroid, M.R.; Van Eck, S. (2001). "Electron affinities of 16 O, 17 O, 18 O, the fine structure of 16O, and the hyperfine structure of 17O". Phys. Rev. A. 64 (5): 052504. Bibcode:2001PhRvA..64e2504B. doi:10.1103/PhysRevA.64.052504.
  11. 1 2 Blondel, C.; Cacciani, P.; Delsart, C.; Trainham, R. (1989). "High Resolution Determination of the Electron Affinity of Fluorine and Bromine using Crossed Ion and Laser Beams". Phys. Rev. A. 40 (7): 3698–3701. Bibcode:1989PhRvA..40.3698B. doi:10.1103/PhysRevA.40.3698. PMID   9902584.
  12. Blondel, C.; Delsart, C.; Goldfarb, F. (2001). "Electron spectrometry at the μeV level and the electron affinities of Si and F". Journal of Physics B . 34: L281–88. doi:10.1088/0953-4075/34/9/101. S2CID   250875182.
  13. Hotop, H.; Lineberger, W.C. (1985). "Binding energies in atomic negative ions. II". J. Phys. Chem. Ref. Data. 14 (3): 731. Bibcode:1985JPCRD..14..731H. doi:10.1063/1.555735.
  14. Scheer, M.; Bilodeau, R.C.; Thøgersen, J.; Haugen, H.K. (1998). "Threshold Photodetachment of Al: Electron Affinity and Fine Structure". Phys. Rev. A. 57 (3): R1493–96. Bibcode:1998PhRvA..57.1493S. doi:10.1103/PhysRevA.57.R1493.
  15. 1 2 Chaibi, W.; Peláez, R.J.; Blondel, C.; Drag, C.; Delsart, C. (2010). "Effect of a magnetic field in photodetachment microscopy". Eur. Phys. J. D . 58 (1): 29. Bibcode:2010EPJD...58...29C. doi:10.1140/epjd/e2010-00086-7. S2CID   17677037.
  16. Peláez, R.J.; Blondel, C.; Vandevraye, M.; Drag, C.; Delsart, C. (2011). "Photodetachment microscopy to an excited spectral term and the electron affinity of phosphorus". J. Phys. B: At. Mol. Opt. Phys. 44 (19): 195009. Bibcode:2011JPhB...44s5009P. doi:10.1088/0953-4075/44/19/195009. hdl: 10261/62382 . S2CID   12279331.
  17. Carette, T.; Drag, C.; Scharf, O.; Blondel, C.; Delsart, C.; Fischer, C. (2000). "F. & Godefroid M. (2010). Isotope shift in the sulfur electron affinity: Observation and theory". Phys. Rev. A. 81: 042522. arXiv: 1002.1297 . doi:10.1103/PhysRevA.81.042522. S2CID   54056163.
  18. Berzinsh, U.; Gustafsson, M.; Hanstorp, D.; Klinkmüller, A.; Ljungblad, U.; Martensson-Pendrill, A.M. (1995). "Isotope shift in the electron affinity of chlorine". Phys. Rev. A. 51 (1): 231–238. arXiv: physics/9804028 . Bibcode:1995PhRvA..51..231B. doi:10.1103/PhysRevA.51.231. PMID   9911578. S2CID   3225884.
  19. Andersson, K.T.; Sandstrom, J.; Kiyan, I.Y.; Hanstorp, D.; Pegg, D.J. (2000). "Measurement of the electron affinity of potassium". Phys. Rev. A. 62 (2): 022503. Bibcode:2000PhRvA..62b2503A. doi:10.1103/PhysRevA.62.022503.
  20. Petrunin, V.V.; Andersen, H.H.; Balling, P.; Andersen, T. (1996). "Structural Properties of the Negative Calcium Ion: Binding Energies and Fine-structure Splitting". Phys. Rev. Lett. 76 (5): 744–47. Bibcode:1996PhRvL..76..744P. doi:10.1103/PhysRevLett.76.744. PMID   10061539.
  21. 1 2 3 4 5 6 7 8 Ning, Chuangang; Lu, Yuzhu (2022). "Electron Affinities of Atoms and Structures of Atomic Negative Ions". J. Phys. Chem. Ref. Data. 51 (2): 021502. Bibcode:2022JPCRD..51b1502N. doi:10.1063/5.0080243. S2CID   248844032.
  22. Tang, R.; Fu, X.; Ning, C. (2018). "Accurate electron affinity of Ti and fine structures of its anions". J. Chem. Phys. 149 (13): 134304. Bibcode:2018JChPh.149m4304T. doi:10.1063/1.5049629. PMID   30292212. S2CID   52934687.
  23. Fu, X.; Luo, Z.; Chen, X.; Li, J.; Ning, C. (2016). "Accurate electron affinity of V and fine-structure splittings of V via slow-electron velocity-map imaging". J. Chem. Phys. 145 (16): 164307. Bibcode:2016JChPh.145p4307F. doi:10.1063/1.4965928. PMID   27802620.
  24. Chen, X.; Luo, Z.; Li, J.; Ning, C. (2016). "Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions". Sci. Rep. 6: 24996. Bibcode:2016NatSR...624996C. doi: 10.1038/srep24996 . PMC   4853736 . PMID   27138292.
  25. Chen, X.; Ning, C. (2016). "Accurate electron affinity of Co and fine-structure splittings of Co via slow-electron velocity-map imaging". Phys. Rev. A. 93 (5): 052508. Bibcode:2016PhRvA..93e2508C. doi:10.1103/PhysRevA.93.052508.
  26. 1 2 3 Scheer, M.; Brodie, C.A.; Bilodeau, R.C.; Haugen, H.K. (1998). "Laser spectroscopic measurements of binding energies and fine-structure splittings of Co, Ni, Rh, and Pd". Phys. Rev. A. 58 (3): 2051–62. Bibcode:1998PhRvA..58.2051S. doi:10.1103/PhysRevA.58.2051.
  27. 1 2 Bilodeau, R.C.; Scheer, M.; Haugen, H.K. (1998). "Infrared Laser Photodetachment of Transition Metal Negative Ions: Studies on Cr, Mo, Cu, and Ag". Journal of Physics B . 31: 3885–91. doi:10.1088/0953-4075/31/17/013. S2CID   250869727.
  28. Tang, R.; Fu, X.; Lu, Y.; Ning, C. (2020). "Accurate electron affinity of Ga and fine structures of its anions". J. Chem. Phys. 152 (11): 114303. Bibcode:2020JChPh.152k4303T. doi:10.1063/1.5144962. PMID   32199425. S2CID   214617280.
  29. Bresteau, D.; Babilotte, Ph.; Drag, C.; Blondel, C. (2015). "Intra-cavity photodetachment microscopy and the electron affinity of germanium". J. Phys. B: At. Mol. Opt. Phys. 48 (12): 125001. Bibcode:2015JPhB...48l5001B. doi:10.1088/0953-4075/48/12/125001.
  30. Walter, C. W.; Gibson, N. D.; Field, R. L.; Snedden, A. P.; Shapiro, J. Z.; Janczak, C. M.; Hanstorp, D. (2009). "Electron affinity of arsenic and the fine structure of As measured using infrared photodetachment threshold spectroscopy". Phys. Rev. A. 80 (1): 014501. Bibcode:2009PhRvA..80a4501W. doi:10.1103/physreva.80.014501.
  31. Vandevraye, M.; Drag, C.; Blondel, C. (2012). "Electron affinity of selenium measured by photodetachment microscopy". Phys. Rev. A. 85 (1): 015401. Bibcode:2012PhRvA..85a5401V. doi:10.1103/PhysRevA.85.015401.
  32. Frey, P.; Breyer, F.; Hotop, H. (1978). "High Resolution Photodetachment from the Rubidium Negative Ion around the Rb(5p1/2) Threshold. Journal of Physics BJ. Phys. B: At. Mol. Phys". Chinese Journal of Chemical Physics. 11: L589–94. doi:10.1088/0022-3700/11/19/005.
  33. Andersen, H.H.; Petrunin, V.V.; Kristensen, P.; Andersen, T. (1997). "Structural properties of the negative strontium ion: Binding energy and fine-structure splitting". Phys. Rev. A. 55 (4): 3247–49. Bibcode:1997PhRvA..55.3247A. doi:10.1103/PhysRevA.55.3247.
  34. Fu, X.; Li, J.; Luo, Z.; Chen, X.; Ning, C. (2017). "Precision measurement of electron affinity of Zr and fine structures of its negative ions. Journal of Chemical Physics J. Chem. Phys". The Journal of Chemical Physics. 147 (6): 064306. doi:10.1063/1.4986547. PMID   28810756.
  35. Luo Z., Chen X., Li J. & Ning C. (2016). Precision measurement of the electron affinity of niobium. Phys. Rev. A93, 020501(R) doi:10.1103/PhysRevA.93.020501
  36. 1 2 3 4 5 6 CRC Handbook of Chemistry and Physics 92nd Edn. (2011–2012); W. M. Haynes. Boca Raton, FL: CRC Press. "Section 10, Atomic, Molecular, and Optical Physics; Electron Affinities".
  37. Walter, C.W.; Gibson, N.D.; Carman, D.J.; Li, Y.-G.; Matyas, D.J. (2010). "Electron affinity of indium and the fine structure of In measured using infrared photodetachment threshold spectroscopy". Phys. Rev. A. 82 (3): 032507. Bibcode:2010PhRvA..82c2507W. doi:10.1103/PhysRevA.82.032507.
  38. Vandevraye, M.; Drag, C.; Blondel, C. (2013). "Electron affinity of tin measured by photodetachment microscopy". Journal of Physics B: Atomic, Molecular and Optical Physics. 46 (12): 125002. Bibcode:2013JPhB...46l5002V. doi:10.1088/0953-4075/46/12/125002. S2CID   121556183.
  39. Scheer, M.; Haugen, H.K.; Beck, D.R. (1997). "Single- and Multiphoton Infrared Laser Spectroscopy of Sb: A Case Study". Phys. Rev. Lett. 79 (21): 4104–7. Bibcode:1997PhRvL..79.4104S. doi:10.1103/PhysRevLett.79.4104.
  40. Haeffler, G.; Klinkmüller, A.E.; Rangell, J.; Berzinsh, U.; Hanstorp, D. (1996). "The electron affinity of tellurium". Z. Phys. D. 38 (3): 211. arXiv: physics/9703012 . Bibcode:1996ZPhyD..38..211H. doi:10.1007/s004600050085. S2CID   10789594.
  41. Peláez, R.J.; Blondel, C.; Delsart, C.; Drag, C. (2009). "Pulsed photodetachment microscopy and the electron affinity of iodine". J. Phys. B. 42 (12): 125001. Bibcode:2009JPhB...42l5001P. doi:10.1088/0953-4075/42/12/125001. S2CID   123302487.
  42. Rothe, S.; Sundberg, J.; Welander, J.; Chrysalidis, K.; Goodacre, T. (2017). "D., Fedosseev V., ... & Kron T. (2017). Laser photodetachment of radioactive 128I". J. Phys. G: Nucl. Part. Phys. 44: 104003. doi: 10.1088/1361-6471/aa80aa .
  43. Navarro Navarrete, José E.; Nichols, Miranda; Ringvall-Moberg, Annie; Welander, Jakob; Lu, Di; Leimbach, David; Kristiansson, Moa K.; Eklund, Gustav; Raveesh, Meena; Chulkov, Ruslan; Zhaunerchyk, Vitali; Hanstorp, Dag (2024-02-21). "High-resolution measurement of the electron affinity of cesium". Physical Review A. 109 (2). doi: 10.1103/PhysRevA.109.022812 . ISSN   2469-9926.
  44. Petrunin, V.V.; Volstad, J.D.; Balling, P.; Kristensen, K.; Andersen, T. (1995). "Resonant Ionization Spectroscopy of Ba: Metastable and Stable Ions". Phys. Rev. Lett. 75 (10): 1911–14. Bibcode:1995PhRvL..75.1911P. doi:10.1103/PhysRevLett.75.1911. PMID   10059160.
  45. Blondel, C. (2020). "Comment on "Measurement of the electron affinity of the lanthanum atom"" (PDF). Phys. Rev. A. 101 (1): 016501. Bibcode:2020PhRvA.101a6501B. doi:10.1103/PhysRevA.101.016501. S2CID   213221561.
  46. Fu, X.-X.; Tang, R.-L.; Lu, Y.-Z.; Ning, C.-G. (2020). "Accurate electron affinity of atomic cerium and excited states of its anion". Chin. Phys. B. 29 (7): 073201. Bibcode:2020ChPhB..29g3201F. doi:10.1088/1674-1056/ab90e9. S2CID   250763618.
  47. 1 2 3 Fu, X.; Lu, Y.; Tang, R.; Ning, C. (2020). "Electron affinity measurements of lanthanide atoms: Pr, Nd, and Tb". Phys. Rev. A. 101 (2): 022502. Bibcode:2020PhRvA.101b2502F. doi:10.1103/PhysRevA.101.022502. S2CID   213030610.
  48. 1 2 3 4 Felfli, Z.; Msezane, A.; Sokolovski, D. (2009). "Resonances in low-energy electron elastic cross sections for lanthanide atoms". Phys. Rev. A. 79 (1): 012714. Bibcode:2009PhRvA..79a2714F. doi:10.1103/PhysRevA.79.012714.
  49. Cheng, S.B.; Castleman, A. W. Jr (2015). "Direct experimental observation of weakly-bound character of the attached electron in europium anion". Sci. Rep. 5: 12414. Bibcode:2015NatSR...512414C. doi: 10.1038/srep12414 . PMC   4510523 . PMID   26198741.
  50. Nadeau, M. J.; Garwan, M. A.; Zhao, X. L.; Litherland, A. E. (1997). "A negative ion survey; towards the completion of the periodic table of the negative ions". Nuclear Instruments and Methods in Physics Research B. 123 (1–4): 521–526. Bibcode:1997NIMPB.123..521N. doi:10.1016/S0168-583X(96)00749-5.
  51. Davis, V.T.; Thompson, J.S. (2001). "Measurement of the electron affinity of thulium". Phys. Rev. A. 65 (1): 010501. Bibcode:2001PhRvA..65a0501D. doi:10.1103/PhysRevA.65.010501.
  52. Fu, X.X.; Tang, R.L.; Lu, Y.Z.; Ning, C.G. (2019). "Measurement of electron affinity of atomic lutetium via the cryo-SEVI Method". Chinese Journal of Chemical Physics. 32 (2): 187. Bibcode:2019ChJCP..32..187F. doi:10.1063/1674-0068/cjcp1812293. S2CID   165042639.
  53. Tang R., Chen X., Fu X., Wang H. and Ning C. (2018). Electron affinity of the hafnium atom. Phys. Rev. A98 020501(R) doi:10.1103/PhysRevA.98.020501.
  54. Lindahl, A.O.; et al. (2010). "The electron affinity of tungsten". Eur. Phys. J. D. 60 (2): 219. Bibcode:2010EPJD...60..219L. doi:10.1140/epjd/e2010-00199-y. S2CID   122176839.
  55. Chen, X.L.; Ning, C.G. (2017). "Observation of Rhenium Anion and Electron Affinity of Re". J. Phys. Chem. Lett. 8 (12): 2735–2738. doi:10.1021/acs.jpclett.7b01079. PMID   28581753.
  56. Lu Y., Zhao J., Tang R., Fu X. & Ning C. (2020). "Measurement of electron affinity of iridium atom and photoelectron angular distributions of iridium anion". J. Chem. Phys.152, 034302 doi:10.1063/1.5134535
  57. Bilodeau, R.C.; Scheer, M.; Haugen, H.K.; Brooks, R.L. (1999). "Near-threshold Laser Spectroscopy of Iridium and Platinum Negative Ions: Electron Affinities and the Threshold Law". Phys. Rev. A. 61 (1): 012505. Bibcode:1999PhRvA..61a2505B. doi:10.1103/PhysRevA.61.012505.
  58. Andersen, T.; Haugen, H.K.; Hotop, H. (1999). "Binding Energies in Atomic Negative Ions: III". J. Phys. Chem. Ref. Data. 28 (6): 1511. Bibcode:1999JPCRD..28.1511A. doi:10.1063/1.556047.
  59. Walter, C.W.; Gibson, N.D.; Spielman, S.E. (2020). "Electron affinity of thallium measured with threshold spectroscopy". Phys. Rev. A. 101 (5): 052511. Bibcode:2020PhRvA.101e2511W. doi:10.1103/PhysRevA.101.052511. S2CID   219489520.
  60. Bresteau, D.; Drag, C.; Blondel, C. (2019). "Electron affinity of lead". J. Phys. B: At. Mol. Opt. Phys. 52 (6): 065001. Bibcode:2019JPhB...52f5001B. doi:10.1088/1361-6455/aaf685. S2CID   125298267.
  61. Bilodeau, R.C.; Haugen, H.K. (2001). "Electron affinity of Bi using infrared laser photodetachment threshold spectroscopy". Phys. Rev. A. 64 (2): 024501. Bibcode:2001PhRvA..64b4501B. doi:10.1103/PhysRevA.64.024501.
  62. Junqin, Li; Zilong, Zhao; Martin, Andersson; Xuemei, Zhang; Chongyang, Chen (2012). "Theoretical study for the electron affinities of negative ions with the MCDHF method". J. Phys. B: At. Mol. Opt. Phys. 45 (16): 165004. Bibcode:2012JPhB...45p5004L. doi:10.1088/0953-4075/45/16/165004. S2CID   121023909.
  63. Leimbach, D.; et al. (2020). "The electron affinity of astatine". Nat. Commun. 11 (1): 3824. arXiv: 2002.11418 . Bibcode:2020NatCo..11.3824L. doi: 10.1038/s41467-020-17599-2 . PMC   7393155 . PMID   32733029.
  64. 1 2 Landau, A.; Eliav, E.; Ishikawa, Y.; Kaldor, U. (2001). "Benchmark calculations of electron affinities of the alkali atoms sodium to eka-francium (element 119)". J. Chem. Phys. 115 (6): 2389. Bibcode:2001JChPh.115.2389L. doi:10.1063/1.1386413.
  65. Andersen, T. (2004). "Atomic negative ions: Structure, dynamics and collisions". Physics Reports. 394 (4–5): 157–313. Bibcode:2004PhR...394..157A. doi:10.1016/j.physrep.2004.01.001.
  66. Tang R., Si R., Fei Z., Fu X., Lu Y., Brage T., Liu H., Chen C. & Ning C. (2019). "Candidate for Laser Cooling of a Negative Ion: High-Resolution Photoelectron Imaging of Th". Phys. Rev. Lett.123, 203002 doi:10.1103/PhysRevLett.123.203002
  67. 1 2 3 4 5 6 7 8 9 10 11 12 Guo, Y.; Whitehead, M.A. (1989). "Electron affinities of alkaline-earth element calculated with the local-spin-density-functional theory". Physical Review A. 40 (1): 28–34. doi:10.1103/PhysRevA.40.28. PMID   9901864.
  68. Tang R., Lu Y., Liu H. & Ning C. (2021). "Electron affinity of uranium and bound states of opposite parity in its anion". Phys. Rev. A 103, L050801 doi:10.1103/PhysRevA.103.L050801
  69. Eliav, Ephraim; Fritzsche, Stephan; Kaldor, Uzi (2015). "Electronic structure theory of the superheavy elements". Nucl. Phys. A. 944: 518–550. Bibcode:2015NuPhA.944..518E. doi:10.1016/j.nuclphysa.2015.06.017.
  70. 1 2 3 4 Borschevsky, Anastasia; Pershina, Valeria; Kaldor, Uzi; Eliav, Ephraim. "Fully relativistic ab initio studies of superheavy elements" (PDF). www.kernchemie.uni-mainz.de. Johannes Gutenberg University Mainz. Archived from the original (PDF) on 15 January 2018. Retrieved 15 January 2018.
  71. Guo, Yangyang; Pašteka, Lukáš F.; Eliav, Ephraim; Borschevsky, Anastasia (2021). "Chapter 5: Ionization potentials and electron affinity of oganesson with relativistic coupled cluster method". In Musiał, Monika; Hoggan, Philip E. (eds.). Advances in Quantum Chemistry. Vol. 83. pp. 107–123. ISBN   978-0-12-823546-1.
  72. Borschevsky, A.; Pershina, V.; Eliav, E.; Kaldor, U. (2013). "Ab initio predictions of atomic properties of element 120 and its lighter group-2 homologues". Phys. Rev. A. 87 (2): 022502–1–8. Bibcode:2013PhRvA..87b2502B. doi:10.1103/PhysRevA.87.022502.
  73. Bradforth, Stephen E.; Kim, Eun Ha; Arnold, Don W.; Neumark, Daniel M. (1993-01-15). "Photoelectron spectroscopy of CN−, NCO−, and NCS−". The Journal of Chemical Physics. 98 (2). AIP Publishing: 800–810. doi:10.1063/1.464244. ISSN   0021-9606.
  74. 1 2 3 4 5 6 7 8 9 Rayner-Canham Appendix 5: Data summarised from, and see also, J. E. Huheey et al., Inorganic Chemistry, 4th ed. (New York: HarperCollins, 1993)
  75. According to NIST as concerns Boron trifluoride, the Magnetron method, lacking mass analysis, is not considered reliable.

See also