Annite

Last updated
Annite
Annite-pas-130ab.jpg
Annite sample
General
Category Phyllosilicates
Mica group
Formula
(repeating unit)
KFe32+AlSi3O10(OH,F)2
IMA symbol Ann [1]
Strunz classification 9.EC.20
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group C2/m
Unit cell a = 5.39, b = 9.33
c = 10.29 [Å]; β = 100°; Z = 2
Identification
ColorBrown to black
Crystal habit Usually in "blocks" of thin sheets or as aggregations of foliated thin scales. Includes large, well formed pseudohexagonal prisms up to 12 cm across and 15 cm long. [2]
Twinning Contact twins with composition surface on {001} and twin axis {310}
Cleavage Perfect in one direction {001} [3]
Fracture Uneven
Tenacity Flexible [4]
Mohs scale hardness2.5–3
Luster Submetallic to vitreous; pearly on cleavage surfaces [5]
Streak Brownish white
Diaphaneity Translucent to transparent [6]
Specific gravity Approximately 3.3
Optical propertiesBiaxial (−)
Refractive index nα = 1.625 – 1.631 nβ = 1.690 nγ = 1.691 – 1.697
Pleochroism X = brown; Y = Z = dark brown
2V angle Calculated: 12° to 36°
Other characteristicsDiagnostic: occurrence: in magnesium poor igneous and metamorphic rocks.
References [7] [8]

Annite is a phyllosilicate mineral in the mica family. It has a chemical formula of KFe32+AlSi3O10(OH)2. [8] Annite is the iron end member of the biotite mica group, the iron rich analogue of magnesium rich phlogopite. [9] Annite is monoclinic and contains tabular crystals and cleavage fragments with pseudohexagonal outlines. [6] There are contact twins with composition surface {001} and twin axis {310}. [10]

Contents

Annite was first described in 1868 for the first noted occurrence in Cape Ann, Rockport, Essex County, Massachusetts, US. [7] It also occurs on Pikes Peak, El Paso County, Colorado. [8] It occurs in igneous and metamorphic rocks that are deficient in magnesium and is associated with fluorite and zircon in the type locality. [8]

Properties

The relief of a mineral refers to the way a mineral may stand out in plane polarized light. A mineral may be referred to as having a low or high relief. Minerals with a high relief, such as annite, have sharp grain boundaries and display good fracture and cleavage. When viewed under a microscope, this mineral may appear to stick out of the other minerals in the thin section. Relief primarily depends on the index of refraction of the mineral. [8] The index of refraction of a mineral is a measure of the speed of light in the mineral. It is expressed as a ratio of the speed of light in vacuum relative to that in the given mineral. Annite has three indices of refraction known to be nα = 1.625 – 1.631 nβ = 1.690 nγ = 1.691 – 1.697. [7] It is also an anisotropic mineral, meaning under the cross polars of a microscope the mineral will become extinct every 90°. However, in plane polarized light, annite appears as a brown or green platy form and is pleochroic, meaning the mineral changes colors under a microscope without the polars being crossed. [8]

Uses

Annite is a member of the mica group and has very similar properties as other micas such as muscovite and biotite. More importantly, annite is interesting to geologists because it can be used for potassium-argon dating. Because annite contains large amounts of potassium, it can be used to find the absolute age of articles older than 1000 years. This type of dating also preserves a record of the direction and intensity of the local magnetic field, giving field geologists better knowledge of their surroundings. [11]

Related Research Articles

<span class="mw-page-title-main">Biotite</span> Group of phyllosilicate minerals within the mica group

Biotite is a common group of phyllosilicate minerals within the mica group, with the approximate chemical formula K(Mg,Fe)3AlSi3O10(F,OH)2. It is primarily a solid-solution series between the iron-endmember annite, and the magnesium-endmember phlogopite; more aluminous end-members include siderophyllite and eastonite. Biotite was regarded as a mineral species by the International Mineralogical Association until 1998, when its status was changed to a mineral group. The term biotite is still used to describe unanalysed dark micas in the field. Biotite was named by J.F.L. Hausmann in 1847 in honor of the French physicist Jean-Baptiste Biot, who performed early research into the many optical properties of mica.

<span class="mw-page-title-main">Mica</span> Group of phyllosilicate minerals

Micas are a group of silicate minerals whose outstanding physical characteristic is that individual mica crystals can easily be split into extremely thin elastic plates. This characteristic is described as perfect basal cleavage. Mica is common in igneous and metamorphic rock and is occasionally found as small flakes in sedimentary rock. It is particularly prominent in many granites, pegmatites, and schists, and "books" of mica several feet across have been found in some pegmatites.

<span class="mw-page-title-main">Muscovite</span> Hydrated phyllosilicate mineral

Muscovite (also known as common mica, isinglass, or potash mica) is a hydrated phyllosilicate mineral of aluminium and potassium with formula KAl2(AlSi3O10)(F,OH)2, or (KF)2(Al2O3)3(SiO2)6(H2O). It has a highly perfect basal cleavage yielding remarkably thin laminae (sheets) which are often highly elastic. Sheets of muscovite 5 meters × 3 meters (16.5 feet × 10 feet) have been found in Nellore, India.

<span class="mw-page-title-main">Titanite</span> Nesosilicate mineral

Titanite, or sphene (from Ancient Greek σφηνώ (sphēnṓ) 'wedge'), is a calcium titanium nesosilicate mineral, CaTiSiO5. Trace impurities of iron and aluminium are typically present. Also commonly present are rare earth metals including cerium and yttrium; calcium may be partly replaced by thorium.

<span class="mw-page-title-main">Lepidolite</span> Light micas with substantial lithium

Lepidolite is a lilac-gray or rose-colored member of the mica group of minerals with chemical formula K(Li,Al)3(Al,Si,Rb)4O10(F,OH)2. It is the most abundant lithium-bearing mineral and is a secondary source of this metal. It is the major source of the alkali metal rubidium.

<span class="mw-page-title-main">Sylvite</span> Potassium chloride mineral

Sylvite, or sylvine, is potassium chloride (KCl) in natural mineral form. It forms crystals in the isometric system very similar to normal rock salt, halite (NaCl). The two are, in fact, isomorphous. Sylvite is colorless to white with shades of yellow and red due to inclusions. It has a Mohs hardness of 2.5 and a specific gravity of 1.99. It has a refractive index of 1.4903. Sylvite has a salty taste with a distinct bitterness.

<span class="mw-page-title-main">Phlogopite</span> Member of the mica family of phyllosilicates

Phlogopite is a yellow, greenish, or reddish-brown member of the mica family of phyllosilicates. It is also known as magnesium mica.

Petrography is a branch of petrology that focuses on detailed descriptions of rocks. Someone who studies petrography is called a petrographer. The mineral content and the textural relationships within the rock are described in detail. The classification of rocks is based on the information acquired during the petrographic analysis. Petrographic descriptions start with the field notes at the outcrop and include macroscopic description of hand-sized specimens. The most important petrographer's tool is the petrographic microscope. The detailed analysis of minerals by optical mineralogy in thin section and the micro-texture and structure are critical to understanding the origin of the rock.

<span class="mw-page-title-main">Silicate mineral</span> Rock-forming minerals with predominantly silicate anions

Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust.

<span class="mw-page-title-main">Hornfels</span>

Hornfels is the group name for a set of contact metamorphic rocks that have been baked and hardened by the heat of intrusive igneous masses and have been rendered massive, hard, splintery, and in some cases exceedingly tough and durable. These properties are caused by fine grained non-aligned crystals with platy or prismatic habits, characteristic of metamorphism at high temperature but without accompanying deformation. The term is derived from the German word Hornfels, meaning "hornstone", because of its exceptional toughness and texture both reminiscent of animal horns. These rocks were referred to by miners in northern England as whetstones.

<span class="mw-page-title-main">Hauyne</span> Silicate mineral

Hauyne or haüyne, also called hauynite or haüynite, is a tectosilicate sulfate mineral with endmember formula Na3Ca(Si3Al3)O12(SO4). As much as 5 wt % K2O may be present, and also H2O and Cl. It is a feldspathoid and a member of the sodalite group. Hauyne was first described in 1807 from samples discovered in Vesuvian lavas in Monte Somma, Italy, and was named in 1807 by Brunn-Neergard for the French crystallographer René Just Haüy (1743–1822). It is sometimes used as a gemstone.

<span class="mw-page-title-main">Optical mineralogy</span> Optical properties of rocks and minerals

Optical mineralogy is the study of minerals and rocks by measuring their optical properties. Most commonly, rock and mineral samples are prepared as thin sections or grain mounts for study in the laboratory with a petrographic microscope. Optical mineralogy is used to identify the mineralogical composition of geological materials in order to help reveal their origin and evolution.

<span class="mw-page-title-main">Margarite</span>

Margarite is a calcium rich member of the mica group of the phyllosilicates with formula: CaAl2(Al2Si2)O10(OH)2. It forms white to pinkish or yellowish gray masses or thin laminae. It crystallizes in the monoclinic crystal system. It typically has a specific gravity of around 3 and a Mohs hardness of 4. It is translucent with perfect 010 cleavage and exhibits crystal twinning.

Zussmanite is a hydrated iron-rich silicate mineral with the chemical formula K(Fe2+,Mg,Mn)13[AlSi17O42](OH)14. It occurs as pale green crystals with perfect cleavage.

<span class="mw-page-title-main">Bird's eye extinction</span>

Bird's eye extinction, or bird's eye maple, is a specific type of extinction exhibited by minerals of the mica group under cross polarized light of the petrographic microscope. It gives the mineral a pebbly appearance as it passes into extinction. This is caused when the grinding tools used to create petrographic thin sections of precise thickness alter the alignment of the previously perfect basal cleavage planes which split micas up into its characteristic thin sheets. The resulting, slightly roughened surface alters the extinction angle of various parts of the crystal lattice, leading to this type of extinction. Since it is not a natural feature of the mineral, bird's eye extinction is not observed in all mica crystals, nor from all angles, but it is quite common, and is used as a diagnostic feature for micas.

<span class="mw-page-title-main">Chamosite</span> Phyllosilicate mineral member of the chlorite group

Chamosite is the Fe2+end member of the chlorite group. A hydrous aluminium silicate of iron, which is produced in an environment of low to moderate grade of metamorphosed iron deposits, as gray or black crystals in oolitic iron ore. Like other chlorites, it is a product of the hydrothermal alteration of pyroxenes, amphiboles and biotite in igneous rock. The composition of chlorite is often related to that of the original igneous mineral so that more Fe-rich chlorites are commonly found as replacements of the Fe-rich ferromagnesian minerals (Deer et al., 1992).

<span class="mw-page-title-main">Laplandite-(Ce)</span>

Laplandite has a general formula of Na4CeTiPO4Si7O18•5H2O, and is found primarily in igneous rocks. This silicate mineral has been found as inclusions in pegmatites, primarily in the Kola Peninsula in Lappland, where the mineral's name gets its origin. Laplandite is orthorhombic, which states that crystallographically, it contains three axes of unequal lengths that all intersect at 90 degrees, perpendicular to one another. The shape of the crystal is bipyramidal, and is similar in structure to olivine or aragonite. Because of these different axes lengths, it shows anisotropism, which will allow for the visibility of birefringence. This property can give the mineral very distinct colors when viewed under cross-polarization. Laplandite has three different indices of refraction, which are measures of the speed of light in vacuum divided by the speed of light within the mineral, determined individually on each axis. Due to these different indices, Laplandite is a biaxial mineral, which states that the mineral will have two optic axes. Under the microscope, this mineral has moderate relief, which describes the contrast between Laplandite's refractive index and the refractive index of the mounting medium on which it is placed. The relief can be seen physically as how easily you can see the boundary lines of the mineral under plane polarized light in a petrographic microscope.

<span class="mw-page-title-main">Magnesiohastingsite</span>

Magnesiohastingsite is a calcium-containing amphibole and a member of the hornblende group. It is an inosilicate (chain silicate) with the formula NaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2 and molar mass 864.69 g. In synthetic magnesiohastingsite it appears that iron occurs both as ferrous iron Fe2+ and as ferric iron Fe3+, but the ideal formula features only ferric iron. It was named in 1928 by Marland P. Billings. The name is for its relationship to hastingsite and its magnesium content. Hastingsite was named for the locality in Dungannon Township, Hastings County, Ontario, Canada.

Robert Andrew Howie was a notable English petrologist.

Hendricksite is a member of the trioctahedral micas group. The mineral was named by Clifford Frondel and Jun Ito in honor of Sterling Brown Hendricks, who studied micas. It was approved in 1966 by the IMA.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. Hazen, R.M. and Burnham, C.W. (1973) The crystal structures of one-layer phlogopite and annite. American Mineralogist, 58, 889–900.
  3. Deer, W.A., Howie, R.A., and Zussman, J. (1963) Sheet Silicates. Rock-forming minerals Volume 3, 55–84.
  4. Eugster, H.P. and Wones, D.R. (1962) Annite. Stability relations of the ferruginous biotite. 3, 82–125
  5. Dana, E.S. (1892) Dana's system of mineralogy, (6th edition), 634.
  6. 1 2 Kwak, T.A.P. and Askins, P.W. (1981) Geology and genesis of the F-Sn-W(-Be-Zn) skarn (wrigglite) at Moina, Tasmania. Economical Geology, 76, 439–467
  7. 1 2 3 Mindat.org
  8. 1 2 3 4 5 6 Handbook of Mineralogy
  9. Deer, W. A., R. A. Howie and Zussman, J., An Introduction to the Rock Forming Minerals, Longman, 1966, p. 212 ISBN   0-582-44210-9
  10. Anthony,J.W., Bideaux, R.A., Bladh, K.W., and Nichols, C.M. (1995), Handbook of Mineralogy, Volume II, Silica, Silicates Part 1, p. 31
  11. Eugster, H.P. and Wones, D.R.(1962) Stability relations of the ferruginous biotite, annite. 3, 82–125