Borosulfate

Last updated

The borosulfates are heteropoly anion compounds which have sulfate groups attached to boron atoms. Other possible terms are sulfatoborates or boron-sulfur oxides. The ratio of sulfate to borate reflects the degree of condensation. With [B(SO4)4]5- there is no condensation, each ion stands alone. In [B(SO4)3]3- the anions are linked into a chain, a chain of loops, or as [B2(SO4)6]6− in a cycle. Finally in [B(SO4)2] the sulfate and borate tetrahedra are all linked into a two or three-dimensional network. These arrangements of oxygen around boron and sulfur can have forms resembling silicates. The first borosulfate to be discovered was K5[B(SO4)4] in 2012 by the research group of Henning Höppe, [1] [2] although the compound class as such had been postulated already in 1962 by G. Schott and H. U. Kibbel. [3] Over 80 unique compounds are known as of 2024.

Contents

They are distinct from the borate sulfates which have separate, uncondensed sulfate and borate ions.

Related compounds include boroselenates, borotellurates, [4] and also boroantimonates, borogallates, borogermanates, borophosphates, boroselenites and borosilicates. [5]

Formation

Borosulfates are formed by heating boric oxide, oleum, or sulfuric acid, with metal carbonates. The degree of condensation is varied with the ratio of oleum to sulfuric acid. Pure oleum is more likely to yield compounds with disulfate groups.

Reactions

When heated to around 500 °C the borosulfates decompose by emitting SO3 vapour and form a metal sulfate and boric oxide. [6]

List

chemmwcrystal systemspace groupunit cell Åvolumedensitycommentreferences
boron sulfateB2S2O9229.74 monoclinic C2a=7.7600 b=4.1664 c=8.6134 β=94.785 Z=2277.512.749no cations; 3D mesh [7]
H[B(HSO4)4]monoclinicP21/ca=15.6974, b=11.436, c=8.5557; β=90.334°; Z=8superacid [8] [9]
H3O[B(SO4)2]P4/ncca=9.1377, c=7.3423; Z=4 [9]
H[B(SO4)(S2O7)]monoclinicP21/ca=15.697 b=11.4362 c=8.5557 β=90.334 [4]
Li[B(SO4)2]Pca = 7.635, b = 9.342, c = 8.432, and β = 92.55°3D network, like tectosilicate [8] [10]
Li[B(S2O7)2] orthorhombic P212121a = 10.862, b = 10.877, c = 17.769 [8] [10]
Li5[B(SO4)4]orthorhombicP21/ca=8.0191 b=10.2111 c=15.0401 [4]
Be[B2(SO4)4]monoclinicC2/ca= 23.856, b= 7.3507, c= 12.3235, β= 98.724(2)°, Z=82136.12.58colourless [11]
NH4[B(SO4)2]P4/ncca=9.1980 c=7.2458decompose 320 °C, proton conductor [4] [12]
NH4[B(S2O7)2]monoclinicCca=11.4403 b=14.9439 c=13.8693 β=93.662 [8] [4]
(NH4)2B4SO10271.38monoclinicC2a=11.3685 b=6.5541 c=12.8328 β=106.247 4918.01.964SHG 1.1 × KDP; min PM wavelength 252 nm; decompose 300 °C [13]
[NH4]3[B(SO4)3]343.12orthorhombicIbcaa=7.2858 b=14.7048 c=22.7052 Z=82433.21.928decompose 320 °C chains [14] [2]
Na[B(SO4)2]monoclinicP2/ca=5.434 b=7.570 c=7.766 β=99.74 [4]
Na[B(S2O7)2]monoclinicP21/ca=10.949, b=8.49, c=12.701; β=110.227°; Z=4 [8] [9]
Na2B6SO13orthorhombicPbcaa=11.6569 b=9.4094 c=17.4833 Z=81917.62.431birefringence Δn = 0.07 @ 589.3 nm [15]
Na5[B(SO4)4]-IorthorhombicPca21a = 10.730, b = 13.891, c = 18.197 [10]
Na5[B(SO4)4]-IIorthorhombicP212121a = 8.624, b = 9.275, c = 16.671 [10]
α-Mg4[B2O(SO4)6]711.22 trigonal P3a=8.0165 c=7.4858 Z=1416.622.835colourless [6]
β-Mg4[B2O(SO4)6]711.22 hexagonal P3a = 13.9196, c = 7.4854, Z = 312532.821colourless [6]
Mg[B2(SO4)4]430.17monoclinicC2/ca = 17.443, b = 5.3145, c = 14.2906 β = 126.323° Z = 41067.32.677 phyllosilicate structure colourless decompose 550 °C [6]
β-Mg[B2(SO4)4]monoclinicP21/na=7.9100 b=8.0815 c=9.0376 β=111.37° Z=2269.012.667colourless decompose 550 °C [16]
Mg3((H2O)B(SO4)3)2706.94triclinicP1a=7.9609 b=7.9671 c=9.2343 α=64.959° β=89.228° γ=60.054°444.962.638200K [15]
Mg3((H2O)B(SO4)3)2706.94R3a=7.9620 c=24.4231 Z=31340.842.627room temperature [15]
K[B(SO4)2]P4/ncca=8.9739 c=7.4114 [4]
K[B(S2O7)2]monoclinicCca=11.3368, b=14.66, c=13.6650; β=94.235°; Z=8 [8] [9]
K2B4SO10313.50monoclinicC2a=11.2631 b=6.4339 c=12.649 β=105.707° Z=4882.42.360colourless [17]
pentapotassium borosulfateK5[B(SO4)4]P41a=9.9023 c=16.18711687.22.471first discovered [8] [1]
K3[B(SO4)3]orthorhombicIbcaa = 7.074, b = 14.266, c = 22.58 [8] [10]
K4[BS4O15(OH)]monoclinicI2/aa=14.524 b=7.3916 c=15.7857 β=115.50 [4]
CaB2S4O16monoclinicP21/ca=5.5188 b=15.1288 c=13.2660 β=92.88sheet [4]
Mn[B2(SO4)4]monoclinicP21/na = 8.0435, b = 7.9174, c = 9.3082, β = 110.94° Z=2553.63colourless [18]
α-Mn4[B2O(SO4)6]833.74trigonalP3a=8.1086 c=7.7509 Z=1441.33.137colourless [6]
β-Mn4[B2O(SO4)6]833.74trigonalP3a=13.9196 c=7.4854
α-Co[B2(SO4)4]monoclinicC2/ca=17.4254 b=5.3397 c=14.3214 β=126.03° Z=4269.402.860pink [16]
β-Co[B2(SO4)4]monoclinicP21/na=7.8892 b=8.1042 c= 9.0409 β=111.29° Z=2269.292.803pink [16]
α-Co4[B2O(SO4)6]849.70trigonalP3a=7.991 c=7.669 Z=1418.03.376pink [6]
α-Ni4[B2O(SO4)6]848.82trigonalP3a=7.9359 c=7.4398 Z=1405.773.474yellow [6]
Cu[B(SO4)2(HSO4)] triclinic P1a=5.3096 b=7.0752 c=11.1977 α=81.154 β=80.302 γ=80.897cyclic [4]
Cu[B2(SO4)4]triclinicP1a=5.2470 b=7.1371 c=7.9222 α=73.814 β=70.692 γ=86.642chain [4]
Zn[B2(SO4)4]monoclinicP21/na = 8.0435, b = 7.9174, c = 9.3082, β = 111.26° Z=2534.36colourless [18]
α-Zn4[B2O(SO4)6]875.46trigonalP3a=7.9971 c=7.4895 Z=1414.813.505colourless [6]
Rb2B4SO10406.24monoclinicC2a=11.3127 b=6.5152 c=12.971 β=105.411° Z=4921.62.928colourless [17]
Rb3[B(SO4)3]orthorhombicIbcaa = 7.2759, b = 14.794, c = 22.637 [10]
Rb4[B2O(SO4)4]orthorhombicPnmaa=8.0415 b=10.647 c=20.425 [4]
Rb5[B(SO4)4]tetragonalP43212a=10.148 c=16.689 Z=4band gap 3.99 eV [4] [19]
Rb3HB4S2O14P63/ma = 6.502, c = 19.02 Z=2 [20]
LiRb4[B(SO4)4]743.8monoclinicP21a=7.5551, c=14.560, c=7.5517 β=90.2372 Z=2transparent [21]
LiRb4[B(SO4)4]743.8tetragonalI4a=7.6128, c=14.631, Z=2at 500K [21]
Sr[B2(SO4)4]493.48orthorhombicPnmaa=12.574 b=12.421 c=7.319 Z=41143.12.867decompose 400 °C [8] [2]
Sr[B2(SO4)3(S2O7)]573.54monoclinicP21/na = 7.470, b = 15.334, c = 12.220, β = 93.29° Z=41397.52.726 [8]
Sr[B2O(SO4)3]orthorhombicPnmaa=1657.3 b=12.037 c=4.39484 [8] [4]
Sr[B3O(SO4)4(SO4H)]617.36monoclinicP21/ca = 11.3309, b= 7.1482, c = 19.355, β = 106.878°, Z = 41500.12.73colourless; Sr in 9 coordination by sulfate oxygens [22]
Y2[B2(SO4)6]monoclinicC2/ca=13.5172 b=11.3941 c=10.8994 β=93.447cyclic [14] [4]
Ag[B(SO4)2]P4/ncca=8.6679 c=7.2897 [4]
Ag[B(S2O7)2]monoclinicP21/ca = 9.507, b = 9.601, c = 11.730, β = 98.35° Z=41059.32.953colourless [23]
Cd[B2(SO4)4] [24]
Cd[B2O(SO4)3]438.20orthorhombicPnmaa=8.9692 b=11.520 c=8.7275 Z=4901.83.23colourless [24]
Cd4[B2O(SO4)6]trigonalP3a=8.2222 c=7.9788 Z=1467.143.78colourless [24]
(I4)[B(S2O7)2]2triclinicP1a = 11.3714 b = 11.5509 c = 12.7811 α = 68.638° β = 68.275° γ = 64.626° Z=21366.162.999orange-brown [25]
Cs2B4SO10501.12monoclinicC2a=11.4012 b=6.5997 c=13.5702 β=103.934° Z=4919.043.359colourless [17]
Cs2[B2O(SO4)3]monoclinicP2/ca=14.765 b=6.710 c=12.528 β=104.50 [20]
Cs3HB4S2O14P63/ma = 6.5648, c = 19.5669 Z=2 [20]
Cs[B(SO4)(S2O7)]monoclinicP21/ca=10.4525, b=11.319, c=8.2760; β=103.206; Z=4 [8] [9]
Cs3Li2[B(SO4)4]monoclinicP21/na=13.7698 c=8.2376 c=13.9066 β=91.778 [14] [4]
Cs3Na2[B(SO4)4]monoclinicP21/ca=13.6406 b=7.9475 c=13.9573 β=990.781 [14] [4]
CsK4[B(SO4)4]P43212a=9.9433 c=16.881 [14] [4]
Ba[B2(SO4)4]orthorhombicPnnaa = 12.791, b = 12.800, c = 7.317 Z = 4 [8] [26]
Ba[B2O(SO4)3]orthorhombicPnmaa=17.1848 b=12.3805 c=4.4226 [8]
Ba[B(S2O7)2]2monoclinicI2/aa = 11.6077, b = 8.9144, c = 21.303, β = 104.034° Z = 4chains [8] [26]
La2[B2(SO4)6]monoclinicC2/ca=1379.2 b=1158.9 c=1139.5 β=93.611cyclic [14] [4]
Ce2[B2(SO4)6]monoclinicC2/c13.740 b=11.5371 c=11.3057 β=93.661cyclic [14] [4]
Pr2[B2(SO4)6]monoclinicC2/ca=13.711 b=11.5305 c=11.2643 β=93.668cyclic [14] [4]
Nd2[B2(SO4)6]monoclinicC2/ca=13.6775 b=11.51.34 11.2046 β=93.5909cyclic [14] [4]
Sm2[B2(SO4)6]monoclinicC2/ca=13.633 b=11.492 c=11.112 β=93.567cyclic [14] [4]
Eu2[B2(SO4)6]monoclinicC2/ca=13.602 b=11.470 c=11.050 β=93.465cyclic [14] [4]
Gd2[B2(SO4)6]monoclinicC2/ca=13.5697 b=11.4426 c=11.0271 β=cyclic [14] [4]
Tb2[B2(SO4)6]monoclinicC2/ca=13.5601 b=11.42.48 c=10.9881 β=93.534cyclic [14] [4]
Dy2[B2(SO4)6]monoclinicC2/ca=13.568 b=11.425 c=10.9703 β=93.540cyclic [14] [4]
Ho2[B2(SO4)6]monoclinicC2/ca=13.505 b=11.409 c=10.921 β=93.453cyclic [14] [4]
Er2[B2(SO4)6]monoclinicC2/ca=13.551 b=11.411 c=10.882 β=93.41cyclic [14] [4]
Tm2[B2(SO4)6]monoclinicC2/ca=13.4981 b=11.3617 10.8327 β=93.4500cyclic [14] [4]
Yb2[B2(SO4)6]monoclinicC2/ca=13.495 b=11.3452 c=10.7961 β=93.390cyclic [14] [4]
Lu2[B2(SO4)6]monoclinicC2/ca=13.469 b=11.364 c=10.799 β=93.369cyclic [14] [4]
Pb[B2(SO4)4]613.05orthorhombicPnnaa=12.516 b=12.521 c=7.302 Z=4114.433.558loop chain [4] [27]
Pb[B2O(SO4)3]orthorhombicP21/ma=4.4000 b=12.1019 c=8.6043 [4]
Bi2[B2(SO4)6]659.08orthorhombicC2/ca = 13.568, b = 11.490, c = 11.106 Z=41728.83.894 [14]
(H3O)Bi[B(SO4)2]41039.72I4a=11.857, c=8.149 Z=21156.842.99colourless; non-linear optical [14]
(UO2)[B(SO4)2(SO3OH)]569.52triclinicP1a=5.448 b=7.021 c=13.522 α =92.248° β =95.347° γ =101.987° Z=23.762green [28]
(UO2)2[B2O(SO4)3(SO3OH)2]1058.23monoclinicP21/na=10.872 b=11.383 c=14.812 β=92.481 Z=43.838yellow [28]

Related Research Articles

<span class="mw-page-title-main">Tellurate</span> Compound containing an oxyanion of tellurium

In chemistry, tellurate is a compound containing an oxyanion of tellurium where tellurium has an oxidation number of +6. In the naming of inorganic compounds it is a suffix that indicates a polyatomic anion with a central tellurium atom.

<span class="mw-page-title-main">Silver sulfate</span> Chemical compound

Silver sulfate is the inorganic compound with the formula Ag2SO4. It is a white solid with low solubility in water.

The phosphidosilicates or phosphosilicides are inorganic compounds containing silicon bonded to phosphorus and one or more other kinds of elements. In the phosphosilicates each silicon atom is surrounded by four phosphorus atoms in a tetrahedron. The triphosphosilicates have a SiP3 unit, that can be a planar triangle like carbonate CO3. The phosphorus atoms can be shared to form different patterns e.g. [Si2P6]10− which forms pairs, and [Si3P7]3− which contains two-dimensional double layer sheets. [SiP4]8− with isolated tetrahedra, and [SiP2]2− with a three dimensional network with shared tetrahedron corners. SiP clusters can be joined, not only by sharing a P atom, but also by way of a P-P bond. This does not happen with nitridosilicates or plain silicates.

The borate fluorides or fluoroborates are compounds containing borate or complex borate ions along with fluoride ions that form salts with cations such as metals. They are in the broader category of mixed anion compounds. They are not to be confused with tetrafluoroborates (BF4) or the fluorooxoborates which have fluorine bonded to boron.

The sulfate fluorides are double salts that contain both sulfate and fluoride anions. They are in the class of mixed anion compounds. Some of these minerals are deposited in fumaroles.

The telluride iodides are chemical compounds that contain both telluride ions (Te2−) and iodide ions (I). They are in the class of mixed anion compounds or chalcogenide halides.

The nitridosilicates are chemical compounds that have anions with nitrogen bound to silicon. Counter cations that balance the electric charge are mostly electropositive metals from the alkali metals, alkaline earths or rare earth elements. Silicon and nitrogen have similar electronegativities, so the bond between them is covalent. Nitrogen atoms are arranged around a silicon atom in a tetrahedral arrangement.

The borophosphates are mixed anion compounds containing borate and phosphate anions, which may be joined together by a common oxygen atom. Compounds that contain water or hydroxy groups can also be included in the class of compounds.

The boroselenates are chemical compounds containing interlinked borate and selenate groups sharing oxygen atoms. Both selenate and borate groups are tetrahedral in shape. They have similar structures to borosulfates and borophosphates. The borotellurates' tellurium atom is much bigger, so TeO6 octahedra appear instead.

Borate sulfates are mixed anion compounds containing separate borate and sulfate anions. They are distinct from the borosulfates where the borate is linked to a sulfate via a common oxygen atom.

Borate nitrates are mixed anion compounds containing separate borate and nitrate anions.

Borate phosphates are mixed anion compounds containing separate borate and phosphate anions. They are distinct from the borophosphates where the borate is linked to a phosphate via a common oxygen atom. The borate phosphates have a higher ratio of cations to number of borates and phosphates, as compared to the borophosphates.

The borate bromides are mixed anion compounds that contain borate and bromide anions. They are in the borate halide family of compounds which also includes borate fluorides, borate chlorides, and borate iodides.

The borate iodides are mixed anion compounds that contain both borate and iodide anions. They are in the borate halide family of compounds which also includes borate fluorides, borate chlorides, and borate bromides.

A nitridophosphate is an inorganic compound that contains nitrogen bound to a phosphorus atom, considered as replacing oxygen in a phosphate.

Arsenidosilicates are chemical compounds that contain anions with arsenic bonded to silicon. They are in the category of tetrelarsenides, pnictidosilicates, or tetrelpnictides. They can be classed as Zintl phases or intermetallics. They are analogous to the nitridosilicates, phosphidosilicates, arsenidogermanates, and arsenidostannates. They are distinct from arsenate silicates which have oxygen connected with arsenic and silicon, or arsenatosilicates with arsenate groups sharing oxygen with silicate.

Arsenide iodides or iodide arsenides are compounds containing anions composed of iodide (I) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide bromides, phosphide iodides, and antimonide iodides.

Carbide chlorides are mixed anion compounds containing chloride anions and anions consisting entirely of carbon. In these compounds there is no bond between chlorine and carbon. But there is a bond between a metal and carbon. Many of these compounds are cluster compounds, in which metal atoms encase a carbon core, with chlorine atoms surrounding the cluster. The chlorine may be shared between clusters to form polymers or layers. Most carbide chloride compounds contain rare earth elements. Some are known from group 4 elements. The hexatungsten carbon cluster can be oxidised and reduced, and so have different numbers of chlorine atoms included.

Carbide iodides are mixed anion compounds containing iodide and carbide anions. Many carbide iodides are cluster compounds, containing one, two or more carbon atoms in a core, surrounded by a layer of metal atoms, and encased in a shell of iodide ions. These ions may be shared between clusters to form chains, double chains or layers.

Oxalate sulfates are mixed anion compounds containing oxalate and sulfate. They are mostly transparent, and any colour comes from the cations.

References

  1. 1 2 Höppe, Henning A.; Kazmierczak, Karolina; Daub, Michael; Förg, Katharina; Fuchs, Franziska; Hillebrecht, Harald (2012-06-18). "The First Borosulfate K5[B(SO4)4]". Angewandte Chemie International Edition. 51 (25): 6255–6257. doi:10.1002/anie.201109237. PMID   22566359.
  2. 1 2 3 Netzsch, Philip; Höppe, Henning A. (2020-09-30). "Synthesis and Characterization of the Chain Borosulfates (NH 4 ) 3 [B(SO 4 ) 3 ] and Sr[B 2 (SO 4 ) 4 ]". Zeitschrift für anorganische und allgemeine Chemie. 646 (18): 1563–1569. doi: 10.1002/zaac.202000105 . ISSN   0044-2313.
  3. Schott, G.; Kibbel, H. U. "Über Sulfatoborate". Zeitschrift für anorganische und allgemeine Chemie. 314 (1–2): 104–112. doi:10.1002/zaac.19623140113. ISSN   0044-2313.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Bruns, Jörn; Höppe, Henning A.; Daub, Michael; Hillebrecht, Harald; Huppertz, Hubert (2020-06-26). "Borosulfates—Synthesis and Structural Chemistry of Silicate Analogue Compounds". Chemistry – A European Journal. 26 (36): 7966–7980. doi:10.1002/chem.201905449. ISSN   0947-6539. PMC   7384169 . PMID   31943390.
  5. Kong, Fang; Ma, Yunxiang; Mao, Jianggao (January 2018). "Lanthanide Inorganic Solids Based on Main Group Borates and Oxyanions of Lone Pair Cations: Lanthanide Inorganic Solids Based on Main Group Borates and Oxyanions of Lone Pair Cations". Chinese Journal of Chemistry. 36 (1): 63–72. doi:10.1002/cjoc.201700597.
  6. 1 2 3 4 5 6 7 8 Netzsch, Philip; Gross, Peter; Takahashi, Hirotaka; Höppe, Henning A. (2018-07-16). "Synthesis and Characterization of the First Borosulfates of Magnesium, Manganese, Cobalt, Nickel, and Zinc". Inorganic Chemistry. 57 (14): 8530–8539. doi:10.1021/acs.inorgchem.8b01234. ISSN   0020-1669. PMID   29957944.
  7. Logemann, Christian; Wickleder, Mathias S. (2013-12-23). "B 2 S 2 O 9 : A Boron Sulfate with Phyllosilicate Topology". Angewandte Chemie International Edition. 52 (52): 14229–14232. doi:10.1002/anie.201307056. PMID   24214383.
  8. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Netzsch, Philip; Höppe, Henning A. (2020-11-26). "Sr[B 2 (SO 4 ) 3 (S 2 O 7 )]: A Borosulfate with an Unprecedented Chain Structure Comprising Disulfate Groups". Inorganic Chemistry. 59 (24): 18102–18108. doi:10.1021/acs.inorgchem.0c02560. ISSN   0020-1669. PMID   33241934. S2CID   227175679.
  9. 1 2 3 4 5 Daub, Michael; Kazmierczak, Karolina; Höppe, Henning A.; Hillebrecht, Harald (2013). "The Borosulfate Story Goes on—From Alkali and Oxonium Salts to Polyacids". Chemistry – A European Journal. 19 (50): 16954–16962. doi:10.1002/chem.201303012. ISSN   1521-3765. PMID   24203813.
  10. 1 2 3 4 5 6 Daub, Michael; Kazmierczak, Karolina; Gross, Peter; Höppe, Henning; Hillebrecht, Harald (2013-05-20). "Exploring a New Structure Family: Alkali Borosulfates Na 5 [B(SO 4 ) 4 ], A 3 [B(SO 4 ) 3 ] (A = K, Rb), Li[B(SO 4 ) 2 ], and Li[B(S 2 O 7 ) 2 ]". Inorganic Chemistry. 52 (10): 6011–6020. doi:10.1021/ic400267s. ISSN   0020-1669. PMID   23656591.
  11. Sutorius, Stefan; Hanrath, Michael; Bruns, Jörn (2022-02-09). "Be[B2(SO4)4] – A Borosulfate exhibiting Ino- and Phyllosilicate Analogue Topology". European Journal of Inorganic Chemistry. 2022 (11): ejic.202200009. doi: 10.1002/ejic.202200009 . ISSN   1434-1948. S2CID   246719711.
  12. Ward, Matthew D.; Chaloux, Brian L.; Johannes, Michelle D.; Epshteyn, Albert (October 2020). "Facile Proton Transport in Ammonium Borosulfate—An Unhumidified Solid Acid Polyelectrolyte for Intermediate Temperatures". Advanced Materials. 32 (42): 2003667. Bibcode:2020AdM....3203667W. doi: 10.1002/adma.202003667 . ISSN   0935-9648. PMID   32924200. S2CID   221672277.
  13. Li, Zijian; Jin, Wenqi; Zhang, Fangfang; Chen, Zilong; Yang, Zhihua; Pan, Shilie (2021-10-09). "Achieving Short-Wavelength Phase-Matching Second Harmonic Generation in Boron-Rich Borosulfate with Planar [BO3] Units". Angewandte Chemie International Edition. 61 (4): anie.202112844. doi:10.1002/anie.202112844. ISSN   1433-7851. PMID   34626043. S2CID   238528455.
  14. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Hämmer, Matthias; Bayarjargal, Lkhamsuren; Höppe, Henning A. (2020-11-12). "The First Bismuth Borosulfates Comprising Oxonium and a Tectosilicate-Analogous Anion". Angewandte Chemie International Edition. 60 (3): 1503–1506. doi: 10.1002/anie.202011786 . ISSN   1433-7851. PMC   7839778 . PMID   33026134. Open Access logo PLoS transparent.svg
  15. 1 2 3 Fan, Jinbin; Yan, Ziting; Chen, Zilong; Li, Huimin; Yang, Zhihua; Zhang, Fangfang; Pan, Shilie (2024-08-19). "Na2B6SO13 with unprecedented [B6SO13]∞ double chains and largest birefringence among borosulfates induced by the uniform arrangement of [B3O7] units". Science China Chemistry. doi:10.1007/s11426-024-2170-6. ISSN   1674-7291.
  16. 1 2 3 Netzsch, Philip; Pielnhofer, Florian; Glaum, Robert; Höppe, Henning A. (2020-11-17). "Synthesis-Controlled Polymorphism and Optical Properties of Phyllosilicate-Analogous Borosulfates M [B 2 (SO 4 ) 4 ] ( M =Mg, Co)". Chemistry – A European Journal. 26 (64): 14745–14753. doi: 10.1002/chem.202003214 . ISSN   0947-6539. PMC   7756226 . PMID   32744744.
  17. 1 2 3 Li, Zijian; Jin, Wenqi; Zhang, Fangfang; Yang, Zhihua; Pan, Shilie (2022-11-23). "Exploring Short-Wavelength Phase-Matching Nonlinear Optical Crystals by Employing KBe 2 BO 3 F 2 as the Template". ACS Central Science. 8 (11): 1557–1564. doi:10.1021/acscentsci.2c00832. ISSN   2374-7943. PMC   9686211 . PMID   36439311.
  18. 1 2 Pasqualini, Leonard C.; Huppertz, Hubert; Bruns, Jörn (2019-12-17). "M[B2(SO4)4] (M = Mn, Zn)—Syntheses and Crystal Structures of Two New Phyllosilicate Analogue Borosulfates". Inorganics. 7 (12): 145. doi: 10.3390/inorganics7120145 . ISSN   2304-6740.
  19. Dong, Lingyun; Pan, Shilie; Wang, Ying; Yu, Hongwei; Lin, Xiaoxia; Han, Shujuan (March 2015). "Synthesis and structural characterization of a new rubidium borosulfate, Rb5BS4O16". Materials Research Bulletin. 63: 93–98. doi:10.1016/j.materresbull.2014.11.047.
  20. 1 2 3 Daub, Michael; Hillebrecht, Harald (September 2015). "Borosulfates Cs 2 B 2 S 3 O 13 , Rb 4 B 2 S 4 O 17 , and A 3 HB 4 S 2 O 14 ( A = Rb, Cs) – Crystalline Approximants for Vitreous B 2 O 3 ?". European Journal of Inorganic Chemistry. 2015 (25): 4176–4181. doi:10.1002/ejic.201500603. ISSN   1434-1948.
  21. 1 2 Li, Yanqiang; Zhou, Zhengyang; Zhao, Sangen; Liang, Fei; Ding, Qingran; Sun, Junliang; Lin, Zheshuai; Hong, Maochun; Luo, Junhua (2021-03-08). "A Deep-UV Nonlinear Optical Borosulfate with Incommensurate Modulations". Angewandte Chemie International Edition. 60 (20): 11457–11463. doi:10.1002/anie.202102107. ISSN   1433-7851. PMID   33686736. S2CID   232160602.
  22. Pasqualini, Leonard; Huppertz, Hubert; Je, Minyeong; Choi, Heechae; Bruns, Jörn (2021-06-13). "Triple Vertex Linkage of (BO4)-Tetrahedra in a Borosulfate: Synthesis, Crystal Structure, and Quantum Chemical Investigation of Sr[B3O(SO4)4(SO4H)]". Angewandte Chemie International Edition. 60 (36): 19740–19743. doi: 10.1002/anie.202106337 . ISSN   1433-7851. PMC   8456809 . PMID   34121302.
  23. Netzsch, Philip; Höppe, Henning A. (2020-12-29). "Ag[B(S2O7)2]: The First Transition Metal Borosulfate Featuring Disulfate Groups". European Journal of Inorganic Chemistry. 2021 (11): 1065–1070. doi: 10.1002/ejic.202001095 . ISSN   1434-1948.
  24. 1 2 3 Hämmer, Matthias; Höppe, Henning A. (2022-09-02). "The Unconventional Cadmium Borosulfates Cd[B2O(SO4)3] and Cd4[B2O(SO4)6]". Zeitschrift für anorganische und allgemeine Chemie. 648 (21): zaac.202200197. doi: 10.1002/zaac.202200197 . ISSN   0044-2313. S2CID   252059729.
  25. van Gerven, David; Sutorius, Stefan; Bruns, Jörn; Wickleder, Mathias S. (2022-07-20). "Stabilizing the Homopolycation (I 4 ) 2+ with a Hexasulfate in (I 4 )[S 6 O 19 ] and a Borosulfate in (I 4 )[B(S 2 O 7 ) 2 ] 2". ChemistryOpen. 11 (11): e202200122. doi:10.1002/open.202200122. ISSN   2191-1363. PMC   9630045 . PMID   35856862. S2CID   250941699.
  26. 1 2 Netzsch, Philip; Pielnhofer, Florian; Höppe, Henning A. (2020-10-19). "From S–O–S to B–O–S to B–O–B Bridges: Ba[B(S 2 O 7 ) 2 ] 2 as a Model System for the Structural Diversity in Borosulfate Chemistry". Inorganic Chemistry. 59 (20): 15180–15188. doi:10.1021/acs.inorgchem.0c02156. ISSN   0020-1669. PMID   33001636. S2CID   222145994.
  27. Schönegger, Sandra; Bruns, Jörn; Gartner, Benjamin; Wurst, Klaus; Huppertz, Hubert (2018-12-31). "Synthesis and Characterization of the First Lead(II) Borosulfate Pb[B 2 (SO 4 ) 4 ]: Synthesis and Characterization of the First Lead(II) Borosulfate Pb[B 2 (SO 4 ) 4 ]". Zeitschrift für anorganische und allgemeine Chemie. 644 (24): 1702–1706. doi: 10.1002/zaac.201800130 .
  28. 1 2 Sweet, Teagan F. M.; Felton, Daniel E.; Szymanowski, Jennifer E. S.; Burns, Peter C. (2022-09-01). "Targeting Diverse Bridging Motifs within Actinide Borosulfates and Establishing an Unconventional Structural Hierarchy". Inorganic Chemistry. 61 (40): 15953–15960. doi:10.1021/acs.inorgchem.2c02144. ISSN   0020-1669. PMID   36047685. S2CID   251977898.