Ammonium dichromate

Last updated
Ammonium dichromate
(NH4)2Cr2O7.JPG
Ammonium-dichromate-2D.png
Ammonium-dichromate-xtal-2007-CM-3D-balls.png
Names
IUPAC name
Ammonium dichromate
Other names
Ammonium bichromate
Ammonium pyrochromate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.029.221 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
RTECS number
  • HX7650000
UNII
UN number 1439
  • InChI=1S/2Cr.2H3N.7O/h;;2*1H3;;;;;;;/q;;;;;;;;;2*-1/p+2 Yes check.svgY
    Key: JOSWYUNQBRPBDN-UHFFFAOYSA-P Yes check.svgY
  • InChI=1/2Cr.2H3N.7O/h;;2*1H3;;;;;;;/q;;;;;;;;;2*-1/p+2/rCr2O7.2H3N/c3-1(4,5)9-2(6,7)8;;/h;2*1H3/q-2;;/p+2
    Key: JOSWYUNQBRPBDN-RFRSXZKWAS
  • [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O.[NH4+].[NH4+]
Properties
(NH4)2Cr2O7
Molar mass 252.07 g/mol
AppearanceOrange-red crystals
Odor odorless
Density 2.115 g/cm3
Melting point 180 °C (356 °F; 453 K) decomposes
18.2 g/100 ml (0 °C)
35.6 g/100 ml (20 °C)
40 g/100 ml (25 °C)
156 g/100 ml (100 °C)
Solubility insoluble in acetone
soluble in ethanol
Structure
monoclinic
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Very toxic, explosive, oxidizing, carcinogenic, mutagenic, dangerous for the environment
GHS labelling:
GHS-pictogram-explos.svg GHS-pictogram-rondflam.svg GHS-pictogram-acid.svg GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg [1]
H272, H301, H312, H314, H317, H330, H334, H340, H350, H360, H372, H410 [1]
P201, P220, P260, P273, P280, P284 [1]
NFPA 704 (fire diamond)
4
2
3
OX
190 °C (374 °F; 463 K)
Lethal dose or concentration (LD, LC):
20–250 mg/kg
Safety data sheet (SDS) ICSC 1368
Related compounds
Other cations
Potassium dichromate
Sodium dichromate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Ammonium dichromate is an inorganic compound with the formula (NH4)2Cr2O7. In this compound, as in all chromates and dichromates, chromium is in a +6 oxidation state, commonly known as hexavalent chromium. It is a salt consisting of ammonium ions and dichromate ions.

Contents

Ammonium dichromate is sometimes known as Vesuvian Fire, because of its use in demonstrations of tabletop "volcanoes". [2] However, this demonstration has become unpopular in schools due to the compound's carcinogenic nature. It has also been used in pyrotechnics and in the early days of photography.

Properties

At room temperature and pressure, the compound exists as orange, acidic crystals soluble in water and alcohol. It is formed by the action of chromic acid on ammonium hydroxide with subsequent crystallisation. [3]

The (NH4)2Cr2O7 crystal (C2/c, z = 4) contains a single type of ammonium ion, at sites of symmetry C1(2,3). Each NH+
4
centre is surrounded irregularly by eight oxygen atoms at N—O distances ranging from ca. 2.83 to ca. 3.17 Å, typical of hydrogen bonds. [4]

Uses

It has been used in pyrotechnics and in the early days of photography as well as in lithography, as a source of pure nitrogen in the laboratory, and as a catalyst. [5] It is also used as a mordant for dyeing pigments, in manufacturing of alizarin, chrome alum, leather tanning and oil purification. [3]

Photosensitive films containing PVA, ammonium dichromate, and a phosphor are spin-coated as aqueous slurries in the production of the phosphor raster of television screens and other devices. The ammonium dichromate acts as the photoactive site. [6]

Reactions

Tabletop volcanoes and thermal decomposition

A few drops of ethanol are added to a small pile of ammonium dichromate ((NH4)2Cr2O7) and ignited. Sparks are emitted and an ash-like product is formed. The phenomenon resembles the eruption of a volcano. The reaction starts at 180 °С, becoming self-sustaining at approximately 225 °С. [7]
Ammonium dichromate decomposition Ammooniumdikromaadi polemine.JPG
Ammonium dichromate decomposition

The volcano demonstration involves igniting a pile of the salt, which initiates the following exothermic conversion:- [8]

(NH
4
)
2
Cr
2
O
7
(s) → Cr
2
O
3
(s) + N
2
(g) + 4H
2
O
(g)  H = −429.1±3 kcal/mol)

Like ammonium nitrate, it is thermodynamically unstable. [9] [10] Its decomposition reaction proceeds to completion once initiated, producing voluminous dark green powdered chromium(III) oxide. Not all of the ammonium dichromate decomposes in this reaction. When the green powder is brought into water a yellow/orange solution is obtained from left over ammonium dichromate.

Observations obtained using relatively high magnification microscopy during a kinetic study of the thermal decomposition of ammonium dichromate provided evidence that salt breakdown proceeds with the intervention of an intermediate liquid phase rather than a solid phase. The characteristic darkening of (NH
4
)
2
Cr
2
O
7
crystals as a consequence of the onset of decomposition can be ascribed to the dissociative loss of ammonia accompanied by progressive anion condensation to Cr
3
O2−
10
, Cr
4
O2−
13
, etc., ultimately yielding CrO
3
. The CrO
3
has been identified as a possible molten intermediate participating in (NH
4
)
2
Cr
2
O
7
decomposition. [11]

Oxidation reactions

Ammonium dichromate is a strong oxidising agent and reacts, often violently, with any reducing agent. The stronger the reducing agent, the more violent the reaction. [9] It has also been used to promote the oxidation of alcohols and thiols. Ammonium dichromate, in the presence of Mg(HSO4)2 and wet SiO2 can act as a very efficient reagent for the oxidative coupling of thiols under solvent free conditions. The reactions produces reasonably good yields under relatively mild conditions. [12] The compound is also used in the oxidation of aliphatic alcohols to their corresponding aldehydes and ketones in ZrCl4/wet SiO2 in solvent free conditions, again with relatively high yields. [13] [14]

Safety

Ammonium dichromate, like all chromium (VI) compounds, is highly toxic and a proven carcinogen. [15] It is also a strong irritant.

Incidents

In sealed containers, ammonium dichromate is likely to explode if heated. [9] In 1986, two workers were killed and 14 others injured at Diamond Shamrock Chemicals in Ashtabula, Ohio, when 2,000 lb (910 kg) of ammonium dichromate exploded as it was being dried in a heater. [16]

Related Research Articles

<span class="mw-page-title-main">Chromium</span> Chemical element, symbol Cr and atomic number 24

Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal.

The term chromic acid is usually used for a mixture made by adding concentrated sulfuric acid to a dichromate, which may contain a variety of compounds, including solid chromium trioxide. This kind of chromic acid may be used as a cleaning mixture for glass. Chromic acid may also refer to the molecular species, H2CrO4 of which the trioxide is the anhydride. Chromic acid features chromium in an oxidation state of +6 (or VI). It is a strong and corrosive oxidising agent and a moderate carcinogen.

<span class="mw-page-title-main">Chromate and dichromate</span> Chromium(VI) anions

Chromate salts contain the chromate anion, CrO2−
4
. Dichromate salts contain the dichromate anion, Cr
2
O2−
7
. They are oxyanions of chromium in the +6 oxidation state and are moderately strong oxidizing agents. In an aqueous solution, chromate and dichromate ions can be interconvertible.

<span class="mw-page-title-main">Ceric ammonium nitrate</span> Chemical compound

Ceric ammonium nitrate (CAN) is the inorganic compound with the formula (NH4)2[Ce(NO3)6]. This orange-red, water-soluble cerium salt is a specialised oxidizing agent in organic synthesis and a standard oxidant in quantitative analysis.

<span class="mw-page-title-main">Potassium dichromate</span> Chemical compound

Potassium dichromate, K2Cr2O7, is a common inorganic chemical reagent, most commonly used as an oxidizing agent in various laboratory and industrial applications. As with all hexavalent chromium compounds, it is acutely and chronically harmful to health. It is a crystalline ionic solid with a very bright, red-orange color. The salt is popular in laboratories because it is not deliquescent, in contrast to the more industrially relevant salt sodium dichromate.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

<span class="mw-page-title-main">Chromium trioxide</span> Chemical compound

Chromium trioxide (also known as chromium(VI) oxide or chromic anhydride) is an inorganic compound with the formula CrO3. It is the acidic anhydride of chromic acid, and is sometimes marketed under the same name. This compound is a dark-purple solid under anhydrous conditions, bright orange when wet and which dissolves in water concomitant with hydrolysis. Millions of kilograms are produced annually, mainly for electroplating. Chromium trioxide is a powerful oxidiser and a carcinogen.

<span class="mw-page-title-main">Chromium(III) oxide</span> Chemical compound

Chromium(III) oxide is an inorganic compound with the formula Cr
2
O
3
. It is one of the principal oxides of chromium and is used as a pigment. In nature, it occurs as the rare mineral eskolaite.

<span class="mw-page-title-main">Copper chromite</span> Chemical compound

Copper chromite is an inorganic compound with the formula Cu2Cr2O5. It is a black solid that is used to catalyze reactions in organic synthesis.

<span class="mw-page-title-main">Chromium(III) fluoride</span> Chemical compound

Chromium(III) fluoride is the name for the inorganic compounds with the chemical formula CrF3 as well as several related hydrates. The compound CrF3 is a green crystalline solid that is insoluble in common solvents, but the coloured hydrates [Cr(H2O)6]F3 and [Cr(H2O)6]F3•3H2O are soluble in water. The trihydrate is green, and the hexahydrate is violet. The anhydrous form sublimes at 1100–1200 °C.

<span class="mw-page-title-main">Uranate</span>

A uranate is a ternary oxide involving the element uranium in one of the oxidation states 4, 5 or 6. A typical chemical formula is MxUyOz, where M represents a cation. The uranium atom in uranates(VI) has two short collinear U–O bonds and either four or six more next nearest oxygen atoms. The structures are infinite lattice structures with the uranium atoms linked by bridging oxygen atoms.

<span class="mw-page-title-main">Chromium compounds</span> Chemical compounds containing chromium

Chromium is a member of group 6, of the transition metals. The +3 and +6 states occur most commonly within chromium compounds, followed by +2; charges of +1, +4 and +5 for chromium are rare, but do nevertheless occasionally exist.

<span class="mw-page-title-main">Hexafluorophosphate</span> Anion with the chemical formula PF6–

Hexafluorophosphate is an anion with chemical formula of [PF6]. It is an octahedral species that imparts no color to its salts. [PF6] is isoelectronic with sulfur hexafluoride, SF6, and the hexafluorosilicate dianion, [SiF6]2−, and hexafluoroantimonate [SbF6]. In this anion, phosphorus has a valence of 5. Being poorly nucleophilic, hexafluorophosphate is classified as a non-coordinating anion.

<span class="mw-page-title-main">Collins reagent</span> Chemical compound

Collins reagent is the complex of chromium(VI) oxide with pyridine in dichloromethane. This metal-pyridine complex, a red solid, is used to oxidize primary alcohols to the corresponding aldehydes and secondary alcohols to the corresponding ketones. This complex is a hygroscopic orange solid.

<span class="mw-page-title-main">Cornforth reagent</span> Chemical compound

The pyridinium dichromate(PDC) or Cornforth reagent is a pyridinium salt of dichromate with the chemical formula [C5H5NH]2[Cr2O7]. This compound is named after the Australian-British chemist Sir John Warcup Cornforth (b. 1917) who introduced it in 1962. The Cornforth reagent is a strong oxidizing agent which can convert primary and secondary alcohols to aldehydes and ketones respectively. In its chemical structure and functions it is closely related to other compounds made from hexavalent chromium oxide, such as pyridinium chlorochromate and Collins reagent. Because of their toxicity, these reagents are rarely used nowadays.

<span class="mw-page-title-main">Oxidation of primary alcohols to carboxylic acids</span> Chemical reaction

The oxidation of primary alcohols to carboxylic acids is an important oxidation reaction in organic chemistry.

<span class="mw-page-title-main">Chromium(VI) oxide peroxide</span> Chemical compound

Chromium(VI) peroxide or chromium oxide peroxide is an unstable compound with the formula CrO5. This compound contains one oxo ligand and two peroxo ligands, making a total of five oxygen atoms per chromium atom.

Oxidation with chromium(VI) complexes involves the conversion of alcohols to carbonyl compounds or more highly oxidized products through the action of molecular chromium(VI) oxides and salts. The principal reagents are Collins reagent, PDC, and PCC. These reagents represent improvements over inorganic chromium(VI) reagents such as Jones reagent.

<span class="mw-page-title-main">Molybdate</span> Chemical compound of the form –O–MoO₂–O–

In chemistry, a molybdate is a compound containing an oxoanion with molybdenum in its highest oxidation state of 6: O−Mo(=O)2−O. Molybdenum can form a very large range of such oxoanions, which can be discrete structures or polymeric extended structures, although the latter are only found in the solid state. The larger oxoanions are members of group of compounds termed polyoxometalates, and because they contain only one type of metal atom are often called isopolymetalates. The discrete molybdenum oxoanions range in size from the simplest MoO2−
4
, found in potassium molybdate up to extremely large structures found in isopoly-molybdenum blues that contain for example 154 Mo atoms. The behaviour of molybdenum is different from the other elements in group 6. Chromium only forms the chromates, CrO2−
4
, Cr
2
O2−
7
, Cr
3
O2−
10
and Cr
4
O2−
13
ions which are all based on tetrahedral chromium. Tungsten is similar to molybdenum and forms many tungstates containing 6 coordinate tungsten.

<span class="mw-page-title-main">Chromium(III) phosphate</span> Chemical compound

Chromium(III) phosphate describes inorganic compounds with the chemical formula CrPO4.(H2O)n, where n = 0, 4, or 6. All are deeply colored solids. Anhydrous CrPO4 is green. The hexahydrate CrPO4•6H2O is violet.

References

  1. 1 2 3 Sigma-Aldrich Co., Ammonium dichromate. Retrieved on 2013-07-20.
  2. "Ammonium Dichromate Volcano". Chemistry Comes Alive!. J. Chem. Educ. (dead link 29 March 2021)
  3. 1 2 Richard J. Lewis Hawley's Condensed Chemical Dictionary. Wiley & Sons, Inc: New York, 2007 ISBN   978-0-471-76865-4
  4. Keresztury, G.; Knop, O. (1982). "Infrared spectra of the ammonium ion in crystals. Part XII. Low-temperature transitions in ammonium dichromate, (NH4)2Cr2O7". Can. J. Chem. 60 (15): 1972–1976. doi:10.1139/v82-277.
  5. Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN   0-07-049439-8
  6. Havard, J. M.; Shim, S. Y.; Fr; eacute; chet, J. M. (1999). "Design of Photoresists with Reduced Environmental Impact. 1. Water-Soluble Resists Based on Photo-Cross-Linking of Poly(vinyl alcohol)". Chem. Mater. 11 (3): 719–725. doi:10.1021/cm980603y.

  7. Planned and performed by Marina Stojanovska, Miha Bukleski and Vladimir Petruševski, Department of Chemistry, FNSM, Ss. Cyril and Methodius University, Skopje, Macedonia.
  8. Neugebauer, C. A.; Margrave, J. L. (1957). "The Heat Formation of Ammonium Dichromate". J. Phys. Chem. 61 (10): 1429–1430. doi:10.1021/j150556a040.
  9. 1 2 3 Young, A.J. (2005). "CLIP, Chemical Laboratory Information Profile: Ammonium Dichromate". J. Chem. Educ. 82 (11): 1617. doi:10.1021/ed082p1617.
  10. G. A. P. Dalgaard; A. C. Hazell; R. G. Hazell (1974). "The Crystal Structure of Ammonium Dichromate, (NH4)2Cr2O7". Acta Chemica Scandinavica . A28: 541–545. doi: 10.3891/acta.chem.scand.28a-0541 .
  11. Galwey, Andrew K.; Pöppl, László; Rajam, Sundara (1983). "A Melt Mechanism for the Thermal Decomposition of Ammonium Dichromate". J. Chem. Soc., Faraday Trans. 1 . 79 (9): 2143–2151. doi:10.1039/f19837902143.
  12. Shirini, F.; et al. (2003). "Solvent free oxidation of thiols by (NH4)2Cr2O7 in the presence of Mg(HSO4)2 and wet SiO2". Journal of Chemical Research . 2003: 28–29. doi: 10.3184/030823403103172823 . S2CID   197126514.
  13. Shirini, F.; et al. (2001). "ZrCl4/wet SiO2 promoted oxidation of alcohols by (NH4)2Cr2O7 in solution and solvent free condition". J. Chem. Research (S). 2001 (11): 467–477. doi: 10.3184/030823401103168541 . S2CID   197118772.
  14. F. Shirini; M. A. Zolfigol; FOO† and M. Khaleghi (2003). "Oxidation of Alcohols Using (NH4)2Cr2O7 in the Presence of Silica Chloride/Wet SiO2 in Solution and under Solvent Free Conditions". Bull. Korean Chem. Soc. 24 (7): 1021–1022. doi: 10.5012/bkcs.2003.24.7.1021 .
  15. Volkovich, V. A.; Griffiths, T. R. (2000). "Catalytic Oxidation of Ammonia: A Sparkling Experiment". Journal of Chemical Education. 77 (2): 177. doi:10.1021/ed077p177.
  16. Diamond, S. (19 January 1986). "Chemical Explosion In Ohio". The New York Times. p. 22.