Dunnite

Last updated
Dunnite
Ammoniumpicrate.png
Names
IUPAC name
Ammonium 2,4,6-trinitrophenolate
Other names
Ammonium picrate; Picratol; 2,4,6-Trinitrophenol ammonium salt; Ammonium picronitrate; Explosive D
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.004.582 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 205-038-3
PubChem CID
UNII
  • InChI=1S/C6H3N3O7.H3N/c10-6-4(8(13)14)1-3(7(11)12)2-5(6)9(15)16;/h1-2,10H;1H3 X mark.svgN
    Key: PADMMUFPGNGRGI-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C6H3N3O7.H3N/c10-6-4(8(13)14)1-3(7(11)12)2-5(6)9(15)16;/h1-2,10H;1H3
    Key: PADMMUFPGNGRGI-UHFFFAOYAZ
  • C1=C(C=C(C(=C1[N+](=O)[O-])[O-])[N+](=O)[O-])[N+](=O)[O-].[NH4+]
Properties
C6H6N4O7
Molar mass 246.135 g·mol−1
Density 1.719 g/cm3 [1]
Melting point 265 °C (509 °F; 538 K) [1]
10 g/L (20 °C)
Hazards
GHS labelling:
GHS-pictogram-explos.svg GHS-pictogram-exclam.svg
Danger
H201, H315, H317, H319
P210, P230, P240, P250, P261, P264, P272, P280, P302+P352, P305+P351+P338, P321, P332+P313, P333+P313, P337+P313, P362, P363, P370+P380, P372, P373, P401, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Dunnite, also known as Explosive D or systematically as ammonium picrate, is an explosive developed in 1906 by US Army Major Beverly W. Dunn, who later served as chief inspector of the Bureau of Transportation Explosives. [2] [3] Ammonium picrate is a salt formed by reacting picric acid and ammonia. It is chemically related to the more stable explosive trinitrotoluene (TNT).

History

Ammonium picrate was proposed for use as a component in gunpowder by Brugère and Abel as early as 1869: the former proposed to mix 54% of it with 46% of saltpetre while the latter, 60% with 40%. [4] Their compositions gave less smoke and were more energetic than black powder but neither was adopted by any military, even though in the 1890s "semi-smokeless" powder compositions featuring ammonium picrates were sold commercially in the US. [5] It also was a minor component of the Peyton powder made by the California Powder Works which was procured by the US military in the same period. [5]

It was the first explosive used in an aerial bombing operation in military history, performed by Italian pilots in Libya in 1911. [6] It was used extensively by the United States Navy during World War I. [7]

Though Dunnite was generally considered an insensitive substance, by 1911 the United States Army had abandoned its use in favor of other alternatives. [8] The Navy, however, used it in armor-piercing artillery shells and projectiles, and in coastal defense.

By the end of WWI a pound of ammonium picrate cost US government 64 cents, while TNT cost 26.5 c/lb, ammonium nitrate used in amatol only 17.5 c/'b and black powder about 25 c/lb. [9]

Dunnite typically did not detonate on striking heavy armor. Rather, the encasing shell would penetrate the armor, after which the charge would be triggered by a base fuze.

In 2008 caches of discarded Dunnite in remote locations were mistaken for rusty rocks at Cape Porcupine, Newfoundland and Labrador, Canada. [10] [11]

Dunnite can be used as a precursor to the highly stable explosive TATB (1,3,5-triamino-2,4,6-trinitrobenzene), by first dehydrating it to form picramide (attaching the ammonia as an amine group instead of an ion) and then further aminating it, using 1,1,1-trimethylhydrazinium iodide (TMHI) made from unsymmetrical dimethylhydrazine rocket fuel and methyl iodide. Thus, surplus materials that would have to be destroyed when no longer needed are converted into a high value explosive. [12] [13]

Related Research Articles

<span class="mw-page-title-main">RDX</span> Explosive chemical compound

RDX (abbreviation of "Research Department eXplosive" or Royal Demolition eXplosive) or hexogen, among other names, is an organic compound with the formula (CH2N2O2)3. It is white, odorless and tasteless, widely used as an explosive. Chemically, it is classified as a nitroamine alongside HMX, which is a more energetic explosive than TNT. It was used widely in World War II and remains common in military applications.

<span class="mw-page-title-main">Dynamite</span> Explosive made using nitroglycerin

Dynamite is an explosive made of nitroglycerin, sorbents, and stabilizers. It was invented by the Swedish chemist and engineer Alfred Nobel in Geesthacht, Northern Germany, and was patented in 1867. It rapidly gained wide-scale use as a more robust alternative to the traditional black powder explosives. It allows the use of nitroglycerine's favorable explosive properties while greatly reducing its risk of accidental detonation.

<span class="mw-page-title-main">Explosive</span> Substance that can explode

An explosive is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An explosive charge is a measured quantity of explosive material, which may either be composed solely of one ingredient or be a mixture containing at least two substances.

<span class="mw-page-title-main">TNT</span> Impact-resistant high explosive

Trinitrotoluene, more commonly known as TNT (and more specifically 2,4,6-trinitrotoluene), and by its preferred IUPAC name 2-methyl-1,3,5-trinitrobenzene, is a chemical compound with the formula C6H2(NO2)3CH3. TNT is occasionally used as a reagent in chemical synthesis, but it is best known as an explosive material with convenient handling properties. The explosive yield of TNT is considered to be the standard comparative convention of bombs and asteroid impacts. In chemistry, TNT is used to generate charge transfer salts.

<span class="mw-page-title-main">Thermobaric weapon</span> Device producing a high-temperature explosion

A thermobaric weapon, also called an aerosol bomb, or a vacuum bomb, is a type of explosive munition that works by dispersing an aerosol cloud of gas, liquid or powdered explosive. The fuel is usually a single compound, rather than a mixture of multiple molecules. Many types of thermobaric weapons can be fitted to hand-held launchers, and can also be launched from airplanes.

<span class="mw-page-title-main">Tetryl</span> Chemical compound

2,4,6-Trinitrophenylmethylnitramine or tetryl (C7H5N5O8) is an explosive compound used to make detonators and explosive booster charges.

<span class="mw-page-title-main">Picric acid</span> Explosive chemical compound

Picric acid is an organic compound with the formula (O2N)3C6H2OH. Its IUPAC name is 2,4,6-trinitrophenol (TNP). The name "picric" comes from Greek: πικρός (pikros), meaning "bitter", due to its bitter taste. It is one of the most acidic phenols. Like other strongly nitrated organic compounds, picric acid is an explosive, which is its primary use. It has also been used as medicine (antiseptic, burn treatments) and as a dye.

<span class="mw-page-title-main">Ammonium nitrate</span> Chemical compound with formula NH4NO3

Ammonium nitrate is a chemical compound with the formula NH4NO3. It is a white crystalline salt consisting of ions of ammonium and nitrate. It is highly soluble in water and hygroscopic as a solid, although it does not form hydrates. It is predominantly used in agriculture as a high-nitrogen fertilizer.

A propellant is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the engine that expels the propellant is called a reaction engine. Although technically a propellant is the reaction mass used to create thrust, the term "propellant" is often used to describe a substance which contains both the reaction mass and the fuel that holds the energy used to accelerate the reaction mass. For example, the term "propellant" is often used in chemical rocket design to describe a combined fuel/propellant, although the propellants should not be confused with the fuel that is used by an engine to produce the energy that expels the propellant. Even though the byproducts of substances used as fuel are also often used as a reaction mass to create the thrust, such as with a chemical rocket engine, propellant and fuel are two distinct concepts.

<span class="mw-page-title-main">Amatol</span> High explosive mixture

Amatol is a highly explosive material made from a mixture of TNT and ammonium nitrate. The British name originates from the words ammonium and toluene. Similar mixtures were known as Schneiderite in France. Amatol was used extensively during World War I and World War II, typically as an explosive in military weapons such as aircraft bombs, shells, depth charges, and naval mines. It was eventually replaced with alternative explosives such as Composition B, Torpex, and Tritonal.

<span class="mw-page-title-main">Shell (projectile)</span> Payload-carrying projectile

A shell, in a military context, is a projectile whose payload contains an explosive, incendiary, or other chemical filling. Originally it was called a bombshell, but "shell" has come to be unambiguous in a military context. A shell can hold a tracer.

<span class="mw-page-title-main">Composition B</span> Explosive, a mix of RDX and TNT

Composition B, also known as Hexotol and Hexolite, is a high explosive consisting of castable mixtures of RDX and TNT. It is used as the main explosive filling in artillery projectiles, rockets, land mines, hand grenades and various other munitions. It was also used for the explosive lenses in the first implosion-type nuclear weapons developed by the United States.

<span class="mw-page-title-main">TATB</span> Chemical compound

TATB, triaminotrinitrobenzene or 2,4,6-triamino-1,3,5-trinitrobenzene is an aromatic explosive, based on the basic six-carbon benzene ring structure with three nitro functional groups (NO2) and three amine (NH2) groups attached, alternating around the ring.

A World War I explosive factory, which was to be later known as NEF Pembrey was built, by Nobel's Explosives, with British Government approval, near the village of Pembrey, Carmarthenshire, Wales. The factory was built on a site consisting of mainly sandhills and sand dunes to provide some protection against damage caused by an explosion. Its main product was TNT (Trinitrotoluene) used for shell filling. The same site was used in World War II to build another explosive factory ROF Pembrey, which also made TNT.

There have been many extremely large explosions, accidental and intentional, caused by modern high explosives, boiling liquid expanding vapour explosions (BLEVEs), older explosives such as gunpowder, volatile petroleum-based fuels such as gasoline, and other chemical reactions. This list contains the largest known examples, sorted by date. An unambiguous ranking in order of severity is not possible; a 1994 study by historian Jay White of 130 large explosions suggested that they need to be ranked by an overall effect of power, quantity, radius, loss of life and property destruction, but concluded that such rankings are difficult to assess.

Minol is a military explosive developed by the Admiralty early in the Second World War to augment supplies of trinitrotoluene (TNT) and RDX, which were in short supply. The aluminium component in Minol significantly prolongs the explosive pulse, making it ideal for use in underwater naval weapons where munitions with a longer explosive pulse are more destructive than those with high brisance. Minol cannot be used in weapons fired from gun barrels because there is a risk of detonation when subjected to over 250 gs of acceleration. Initially, three Minol formulas were used. All percentages shown are by weight:

A pyrotechnic composition is a substance or mixture of substances designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, as a result of non-detonative self-sustaining exothermic chemical reactions. Pyrotechnic substances do not rely on oxygen from external sources to sustain the reaction.

Explosive materials are produced in numerous physical forms for their use in mining, engineering, or military applications. The different physical forms and fabrication methods are grouped together in several use forms of explosives.

<span class="mw-page-title-main">Potassium picrate</span> Chemical compound

Potassium picrate, or potassium 2,4,6-trinitrophenolate, is an organic chemical, a picrate of potassium. It is a reddish yellow or green crystalline material. It is a primary explosive. Anhydrous potassium picrate forms orthorhombic crystals.

Bluebonnet Ordnance Plant was a munitions plant near McGregor, Texas, which manufactured TNT, bombs, ammonium nitrate and similar products for the American troops during World War II. BlueBonnet Ordnance Plant was one of four ordnance plants in the United States during World War II.

References

  1. 1 2 Record of Ammoniumpikrat in the GESTIS Substance Database of the Institute for Occupational Safety and Health, accessed on 24. Nov. 2007.
  2. War Records Committee of the Alumni Association (1920), Technology's War Record: An Interpretation of the Contribution Made by the Massachusetts Institute of Technology, Its Staff, Its Former Students and Its Undergraduates to the Cause of the United States and the Allied Powers in the Great War, 1914–1919, Cambridge, MA: Massachusetts Institute of Technology, p. 364
  3. "Dunnite Smashes Strongest Armor", The New York Times , August 18, 1907
  4. Guttmann, Oscar (1895). The Manufacture of Explosives: A Theoretical and Practical Treatise on the History, the Physical and Chemical Properties, and the Manufacture of Explosives. Whittaker and Company.
  5. 1 2 Gelder, Arthur Pine Van; Schlatter, Hugo (1927). History of the Explosives Industry in America. Columbia University Press. ISBN   978-0-231-91436-9.
  6. , La Stampa, November 2, 1911
  7. Dunnite, Firstworldwar.com
  8. Ridicule Spy Story: Army Abandoned the Use of Dunnite Years Ago, Officers Say, The New York Times , August 8, 1911
  9. Department, United States War (1919). America's Munitions 1917-1918: Report of Benedict Crowell, the Assistant Secretary of War, Director of Munitions. U.S. Government Printing Office.
  10. Moore, Oliver (2008-09-11). "Family makes explosive discovery on Labrador shore". The Globe and Mail. Archived from the original on 2017-01-09.
  11. "Beachcombing Labrador family carries home wartime explosive". Canadian Broadcasting Corporation. 2008-09-10. Retrieved 2017-01-07.
  12. Mitchell, Alexander R.; Pagoria, P. F.; Schmidt, R D. (10 November 1995). Conversion of the Rocket Propellant UDMH to a Reagent Useful in Vicarious Nucleophilic Substitution Reactions (PDF) (Technical report). Lawrence Livermore National Laboratory. S2CID   54794595. UCRL-JC-122489.
  13. Mitchell, Alexander R.; Coburn, Michael D.; Schmidt, Robert D.; Pagoria, Philip F.; Lee, Gregory S. (2002). "Advances in the chemical conversion of surplus energetic materials to higher value products". Thermochimica Acta. 384 (1–2): 205–217. doi:10.1016/S0040-6031(01)00806-1.