Ammonium fluoride

Last updated
Ammonium fluoride
The ammonium cation Ammonium.svg
The ammonium cation
The fluoride anion F-.svg
The fluoride anion
Ammonium-fluoride-3D-balls-ionic.png
Fluorid amonny.PNG
Names
IUPAC name
Ammonium fluoride
Other names
Neutral ammonium fluoride
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.031.975 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 235-185-9
PubChem CID
RTECS number
  • BQ6300000
UNII
UN number 2505
  • InChI=1S/FH.H3N/h1H;1H3 Yes check.svgY
    Key: LDDQLRUQCUTJBB-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/FH.H3N/h1H;1H3
    Key: LDDQLRUQCUTJBB-UHFFFAOYAM
  • [F-].[NH4+]
Properties
NH4F
Molar mass 37.037 g/mol
AppearanceWhite crystalline solid
hygroscopic
Density 1.009 g/cm3
Melting point 100 °C (212 °F; 373 K) (decomposes)
83.5 g/100 ml (25 °C) [1]
Solubility slightly soluble in alcohol, insoluble in liquid ammonia
−23.0×10−6 cm3/mol
Structure
Wurtzite structure (hexagonal)
Hazards
GHS labelling: [2]
GHS-pictogram-acid.svg GHS-pictogram-skull.svg
Danger
H301, H311, H314, H330, H331
P260, P261, P264, P270, P271, P280, P284, P301+P310, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P310, P311, P312, P320, P321, P322, P330, P361, P363, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
0
0
Flash point Non-flammable
Safety data sheet (SDS) ICSC 1223
Related compounds
Other anions
Ammonium chloride
Ammonium bromide
Ammonium iodide
Other cations
Sodium fluoride
Potassium fluoride
Related compounds
Ammonium bifluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Ammonium fluoride is the inorganic compound with the formula NH4F. It crystallizes as small colourless prisms, having a sharp saline taste, and is highly soluble in water. Like all fluoride salts, it is moderately toxic in both acute and chronic overdose. [3]

Contents

Crystal structure

Ammonium fluoride adopts the wurtzite crystal structure, in which both the ammonium cations and the fluoride anions are stacked in ABABAB... layers, each being tetrahedrally surrounded by four of the other. There are N−H···F hydrogen bonds between the anions and cations. [4] This structure is very similar to ice, and ammonium fluoride is the only substance which can form mixed crystals with water. [5]

Reactions

On passing hydrogen fluoride gas (in excess) through the salt, ammonium fluoride absorbs the gas to form the addition compound ammonium bifluoride. The reaction occurring is:

NH4F + HF → NH4HF2

It sublimes when heated—a property common among ammonium salts. In the sublimation, the salt decomposes to ammonia and hydrogen fluoride, and the two gases can recombine to give ammonium fluoride, i.e. the reaction is reversible:

[NH4]F ⇌ NH3 + HF

Uses

This substance is commonly called "commercial ammonium fluoride". The word "neutral" is sometimes added to "ammonium fluoride" to represent the neutral salt [NH4]F as opposed to the "acid salt" (NH4HF2). The acid salt is usually used in preference to the neutral salt in the etching of glass and related silicates. This property is shared among all soluble fluorides. For this reason it cannot be handled in glass test tubes or apparatus during laboratory work.

It is also used for preserving wood, as a mothproofing agent, in printing and dyeing textiles, and as an antiseptic in breweries. [6]

Related Research Articles

<span class="mw-page-title-main">Salt (chemistry)</span> Chemical compound involving ionic bonding

In chemistry, a salt or ionic compound is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a neutral compound with no net electric charge. The constituent ions are held together by electrostatic forces termed ionic bonds.

<span class="mw-page-title-main">Ammonium</span> Chemical compound

The ammonium cation is a positively charged polyatomic ion with the chemical formula NH+4 or [NH4]+. It is formed by the protonation of ammonia. Ammonium is also a general name for positively charged (protonated) substituted amines and quaternary ammonium cations, where one or more hydrogen atoms are replaced by organic or other groups.

Pseudohalogens are polyatomic analogues of halogens, whose chemistry, resembling that of the true halogens, allows them to substitute for halogens in several classes of chemical compounds. Pseudohalogens occur in pseudohalogen molecules, inorganic molecules of the general forms PsPs or Ps–X, such as cyanogen; pseudohalide anions, such as cyanide ion; inorganic acids, such as hydrogen cyanide; as ligands in coordination complexes, such as ferricyanide; and as functional groups in organic molecules, such as the nitrile group. Well-known pseudohalogen functional groups include cyanide, cyanate, thiocyanate, and azide.

<span class="mw-page-title-main">Ammonium hydrosulfide</span> Chemical compound

Ammonium hydrosulfide is the chemical compound with the formula [NH4]SH.

Potassium cyanate is an inorganic compound with the formula KOCN. It is a colourless solid. It is used to prepare many other compounds including useful herbicide. Worldwide production of the potassium and sodium salts was 20,000 tons in 2006.

An inorganic nonaqueous solvent is a solvent other than water, that is not an organic compound. These solvents are used in chemical research and industry for reactions that cannot occur in aqueous solutions or require a special environment. Inorganic nonaqueous solvents can be classified into two groups, protic solvents and aprotic solvents. Early studies on inorganic nonaqueous solvents evaluated ammonia, hydrogen fluoride, sulfuric acid, as well as more specialized solvents, hydrazine, and selenium oxychloride.

<span class="mw-page-title-main">Rubidium fluoride</span> Chemical compound

Rubidium fluoride (RbF) is the fluoride salt of rubidium. It is a cubic crystal with rock-salt structure.

<span class="mw-page-title-main">Hexafluorosilicic acid</span> Octahedric silicon compound

Hexafluorosilicic acid is an inorganic compound with the chemical formula H
2
SiF
6
. Aqueous solutions of hexafluorosilicic acid consist of salts of the cation and hexafluorosilicate anion. These salts and their aqueous solutions are colorless.

<span class="mw-page-title-main">Ammonium bifluoride</span> Chemical compound

Ammonium bifluoride is the inorganic compound with the formula [NH4][HF2] or [NH4]F·HF. It is produced from ammonia and hydrogen fluoride. This colourless salt is a glass-etchant and an intermediate in a once-contemplated route to hydrofluoric acid.

<span class="mw-page-title-main">Zirconium tetrafluoride</span> Chemical compound

Zirconium(IV) fluoride describes members of a family inorganic compounds with the formula (ZrF4(H2O)x. All are colorless, diamagnetic solids. Anhydrous Zirconium(IV) fluoride' is a component of ZBLAN fluoride glass.

<span class="mw-page-title-main">Zinc fluoride</span> Chemical compound

Zinc fluoride is an inorganic chemical compound with the chemical formula ZnF2. It is encountered as the anhydrous form and also as the tetrahydrate, ZnF2·4H2O (rhombohedral crystal structure). It has a high melting point and has the rutile structure containing 6 coordinate zinc, which suggests appreciable ionic character in its chemical bonding. Unlike the other zinc halides, ZnCl2, ZnBr2 and ZnI2, it is not very soluble in water.

<span class="mw-page-title-main">Tantalum(V) fluoride</span> Chemical compound

Tantalum(V) fluoride is the inorganic compound with the formula TaF5. It is one of the principal molecular compounds of tantalum. Characteristic of some other pentafluorides, the compound is volatile but exists as an oligomer in the solid state.

The bifluoride ion is an inorganic anion with the chemical formula [HF2]. The anion is colorless. Salts of bifluoride are commonly encountered in the reactions of fluoride salts with hydrofluoric acid. The commercial production of fluorine involves electrolysis of bifluoride salts.

<span class="mw-page-title-main">Titanium tetrafluoride</span> Chemical compound

Titanium(IV) fluoride is the inorganic compound with the formula TiF4. It is a white hygroscopic solid. In contrast to the other tetrahalides of titanium, it adopts a polymeric structure. In common with the other tetrahalides, TiF4 is a strong Lewis acid.

<span class="mw-page-title-main">Hexafluorophosphate</span> Anion with the chemical formula PF6–

Hexafluorophosphate is an anion with chemical formula of [PF6]. It is an octahedral species that imparts no color to its salts. [PF6] is isoelectronic with sulfur hexafluoride, SF6, and the hexafluorosilicate dianion, [SiF6]2−, and hexafluoroantimonate [SbF6]. In this anion, phosphorus has a valence of 5. Being poorly nucleophilic, hexafluorophosphate is classified as a non-coordinating anion.

<span class="mw-page-title-main">Potassium bifluoride</span> Chemical compound

Potassium bifluoride is the inorganic compound with the formula K[HF2]. This colourless salt consists of the potassium cation and the bifluoride anion. The salt is used as an etchant for glass. Sodium bifluoride is related and is also of commercial use as an etchant as well as in cleaning products.

<span class="mw-page-title-main">Hydrogenoxalate</span> Ion

Hydrogenoxalate or hydrogen oxalate(IUPAC name: 2-Hydroxy-2-oxoacetate) is an anion with chemical formula HC2O−4 or HO−C(=O)−CO−2, derived from oxalic acid by the loss of a single proton; or, alternatively, from the oxalate anion C2O2−4 by addition of a proton. The name is also used for any salt containing this anion. Especially in older literature, hydrogenoxalates may also be referred to as bioxalates, acid oxalates, or monobasic oxalates. Hydrogenoxalate is amphoteric, in that it can react both as an acid or a base.

Ammonium fluorosilicate (also known as ammonium hexafluorosilicate, ammonium fluosilicate or ammonium silicofluoride) has the formula (NH4)2SiF6. It is a toxic chemical, like all salts of fluorosilicic acid. It is made of white crystals, which have at least three polymorphs and appears in nature as rare minerals cryptohalite or bararite.

<span class="mw-page-title-main">Monofluorophosphate</span> Chemical compound

Monofluorophosphate is an anion with the formula PO3F2−, which is a phosphate group with one oxygen atom substituted with a fluoride atom. The charge of the ion is −2. The ion resembles sulfate in size, shape and charge, and can thus form compounds with the same structure as sulfates. These include Tutton's salts and langbeinites. The most well-known compound of monofluorophosphate is sodium monofluorophosphate, commonly used in toothpaste.

References

  1. "Ammonium Fluoride". pubchem.ncbi.nlm.nih.gov.
  2. "Ammonium Fluoride". pubchem.ncbi.nlm.nih.gov.
  3. "Fluoride Toxicity - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2020-12-16.
  4. A. F. Wells, Structural Inorganic Chemistry, 5th ed., Oxford University Press, Oxford, UK, 1984.
  5. Brill, R.; Zaromb, S. (1954). "Mixed Crystals of Ice and Ammonium Fluoride". Nature. 173 (4398): 316–317. Bibcode:1954Natur.173..316B. doi:10.1038/173316a0. S2CID   4146351.
  6. Aigueperse, Jean; Paul Mollard; Didier Devilliers; Marius Chemla; Robert Faron; Renée Romano; Jean Pierre Cuer (2005). "Fluorine Compounds, Inorganic". In Ullmann (ed.). Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_307.