Sodium fluorosilicate

Last updated
Sodium fluorosilicate
Natriumhexafluorosilicat.png
Unit cell of sodium hexafluoridosilicate
Names
Preferred IUPAC name
Sodium fluorosilicate
Systematic IUPAC name
Sodium hexafluoridosilicate(2–) [1]
Other names
Disodium hexafluorosilicate/sodium fluosilicate/sodium silicofluoride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.037.198 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 240-934-8
PubChem CID
RTECS number
  • VV8410000
UNII
UN number 2674
  • InChI=1S/F6Si.2Na/c1-7(2,3,4,5)6;;/q-2;2*+1
    Key: TWGUZEUZLCYTCG-UHFFFAOYSA-N
  • [Na+].[Na+].F[Si--](F)(F)(F)(F)F
Properties
Na2[SiF6]
Molar mass 188 g/mol
Appearancewhite granular powder
Odor odorless
Density 2.7 g/cm3
0.64 g/100 mL (20 °C)
1.27 g/100 mL (50 °C)
2.45 g/100 mL (100 °C)
Solubility insoluble in alcohol
1.312
Structure [2]
trigonal
P321
a = 8.859, c = 5.038
4
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Lethal dose or concentration (LD, LC):
70 mg/kg (mouse, oral)
125 mg/kg (rabbit, oral) [3]
Related compounds
Other cations
Ammonium hexafluorosilicate

Fluorosilicic acid

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Sodium fluorosilicate is a compound with the chemical formula Na2[SiF6]. Unlike other sodium salts, it has a low solubility in water.

Contents

Natural occurrence

Sodium hexafluorosilicate occurs naturally as the rare mineral malladrite found within some volcanic fumaroles. [4]

Manufacturing

Sodium fluorosilicate is made by neutralizing fluorosilicic acid with sodium chloride or sodium sulfate.

H2[SiF6] + 2 NaCl → Na2[SiF6] + 2 HCl

Possible application

It is used in some countries as additives for water fluoridation, opal glass raw material, ore refining, or other fluoride chemical (like sodium fluoride, magnesium silicofluoride, cryolite, aluminum fluoride) production. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Halogen</span> Group of chemical elements

The halogens are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and tennessine (Ts), though some authors would exclude tennessine as its chemistry is unknown and is theoretically expected to be more like that of gallium. In the modern IUPAC nomenclature, this group is known as group 17.

Fluoride is an inorganic, monatomic anion of fluorine, with the chemical formula F
, whose salts are typically white or colorless. Fluoride salts typically have distinctive bitter tastes, and are odorless. Its salts and minerals are important chemical reagents and industrial chemicals, mainly used in the production of hydrogen fluoride for fluorocarbons. Fluoride is classified as a weak base since it only partially associates in solution, but concentrated fluoride is corrosive and can attack the skin.

<span class="mw-page-title-main">Hydrofluoric acid</span> Solution of hydrogen fluoride in water

Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water. Solutions of HF are colorless, acidic and highly corrosive. It is used to make most fluorine-containing compounds; examples include the commonly used pharmaceutical antidepressant medication fluoxetine (Prozac) and the material PTFE (Teflon). Elemental fluorine is produced from it. It is commonly used to etch glass and silicon wafers.

<span class="mw-page-title-main">Water fluoridation</span> Addition of fluoride to a water supply to reduce tooth decay

Water fluoridation is the controlled adjustment of fluoride to a public water supply solely to reduce tooth decay. Fluoridated water contains fluoride at a level that is effective for preventing cavities; this can occur naturally or by adding fluoride. Fluoridated water operates on tooth surfaces: in the mouth, it creates low levels of fluoride in saliva, which reduces the rate at which tooth enamel demineralizes and increases the rate at which it remineralizes in the early stages of cavities. Typically a fluoridated compound is added to drinking water, a process that in the U.S. costs an average of about $1.26 per person-year. Defluoridation is needed when the naturally occurring fluoride level exceeds recommended limits. In 2011, the World Health Organization suggested a level of fluoride from 0.5 to 1.5 mg/L, depending on climate, local environment, and other sources of fluoride. Bottled water typically has unknown fluoride levels.

<span class="mw-page-title-main">Sodium fluoride</span> Ionic compound (NaF)

Sodium fluoride (NaF) is an inorganic compound with the formula NaF. It is a colorless or white solid that is readily soluble in water. It is used in trace amounts in the fluoridation of drinking water to prevent tooth decay, and in toothpastes and topical pharmaceuticals for the same purpose. In 2021, it was the 291st most commonly prescribed medication in the United States, with more than 600,000 prescriptions. It is also used in metallurgy and in medical imaging.

<span class="mw-page-title-main">Xenon hexafluoride</span> Chemical compound

Xenon hexafluoride is a noble gas compound with the formula XeF6. It is one of the three binary fluorides of xenon that have been studied experimentally, the other two being XeF2 and XeF4. All known are exergonic and stable at normal temperatures. XeF6 is the strongest fluorinating agent of the series. It is a colorless solid that readily sublimes into intensely yellow vapors.

<span class="mw-page-title-main">Hydrogen fluoride</span> Chemical compound

Hydrogen fluoride (fluorane) is an inorganic compound with chemical formula HF. It is a very poisonous, colorless gas or liquid that dissolves in water to yield an aqueous solution termed hydrofluoric acid. It is the principal industrial source of fluorine, often in the form of hydrofluoric acid, and is an important feedstock in the preparation of many important compounds including pharmaceuticals and polymers, e.g. polytetrafluoroethylene (PTFE). HF is also widely used in the petrochemical industry as a component of superacids. Due to strong and extensive hydrogen bonding, it boils at near room temperature, much higher than other hydrogen halides.

<span class="mw-page-title-main">Hexafluorosilicic acid</span> Octahedric silicon compound

Hexafluorosilicic acid is an inorganic compound with the chemical formula H
2
SiF
6
. Aqueous solutions of hexafluorosilicic acid consist of salts of the cation and hexafluorosilicate anion. These salts and their aqueous solutions are colorless.

<span class="mw-page-title-main">Ammonium bifluoride</span> Chemical compound

Ammonium bifluoride is the inorganic compound with the formula [NH4][HF2] or [NH4]F·HF. It is produced from ammonia and hydrogen fluoride. This colourless salt is a glass-etchant and an intermediate in a once-contemplated route to hydrofluoric acid.

<span class="mw-page-title-main">Silicon tetrafluoride</span> Chemical compound

Silicon tetrafluoride or tetrafluorosilane is a chemical compound with the formula SiF4. This colorless gas is notable for having a narrow liquid range: its boiling point is only 4 °C above its melting point. It was first prepared in 1771 by Carl Wilhelm Scheele by dissolving silica in hydrofluoric acid., later synthesized by John Davy in 1812. It is a tetrahedral molecule and is corrosive.

<span class="mw-page-title-main">Aluminium fluoride</span> Chemical compound

Aluminium fluoride is an inorganic compound with the formula AlF3. It forms hydrates AlF3·xH2O. Anhydrous AlF3 and its hydrates are all colorless solids. Anhydrous AlF3 is used in the production of aluminium metal. Several occur as minerals.

<span class="mw-page-title-main">Zirconium tetrafluoride</span> Chemical compound

Zirconium(IV) fluoride describes members of a family inorganic compounds with the formula (ZrF4(H2O)x. All are colorless, diamagnetic solids. Anhydrous Zirconium(IV) fluoride' is a component of ZBLAN fluoride glass.

<span class="mw-page-title-main">Manganese(IV) fluoride</span> Chemical compound

Manganese tetrafluoride, MnF4, is the highest fluoride of manganese. It is a powerful oxidizing agent and is used as a means of purifying elemental fluorine.

<span class="mw-page-title-main">Fluorine</span> Chemical element, symbol F and atomic number 9

Fluorine is a chemical element; it has symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. Fluorine is extremely reactive, as it reacts with all other elements except for the light inert gases.

<span class="mw-page-title-main">Bararite</span> Halide mineral

Bararite is a natural form of ammonium fluorosilicate (also known as hexafluorosilicate or fluosilicate). It has chemical formula (NH4)2SiF6 and trigonal crystal structure. This mineral was once classified as part of cryptohalite. Bararite is named after the place where it was first described, Barari, India. It is found at the fumaroles of volcanoes (Vesuvius, Italy), over burning coal seams (Barari, India), and in burning piles of anthracite (Pennsylvania, U.S.). It is a sublimation product that forms with cryptohalite, sal ammoniac, and native sulfur.

Ammonium fluorosilicate (also known as ammonium hexafluorosilicate, ammonium fluosilicate or ammonium silicofluoride) has the formula (NH4)2SiF6. It is a toxic chemical, like all salts of fluorosilicic acid. It is made of white crystals, which have at least three polymorphs and appears in nature as rare minerals cryptohalite or bararite.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

<span class="mw-page-title-main">Sodium bifluoride</span> Chemical compound

Sodium bifluoride is the inorganic compound with the formula Na[HF2]. It is a salt of sodium cation and bifluoride anion. It is a white, water-soluble solid that decomposes upon heating. Sodium bifluoride is non-flammable, hygroscopic, and has a pungent smell. Sodium bifluoride has a number of applications in industry.

Potassium fluorosilicate is a chemical compound with the chemical formula K2[SiF6].

References

  1. "Parent Hydride Names and Substitutive Nomenclature". Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005 (PDF). RSC Publishing. 2005. pp. 114–135.
  2. Allan Zalkin, J. D. Forrester, David H. Templeton (1964). "The Crystal Structure of Sodium Fluorosilicate". Acta Crystallographica. 17 (11): 1408–1412. Bibcode:1964AcCry..17.1408Z. doi: 10.1107/S0365110X64003516 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. "Fluorides (as F)". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. "Malladrite".
  5. "PUB". Archived from the original on 2009-03-26. Retrieved 2009-08-10.