Sodium bismuthate

Last updated
Sodium bismuthate
NaBiO3.jpg
NaBiO3 powder.
Names
Other names
Sodium bismuth oxide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.032.220 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 235-455-6
PubChem CID
UNII
  • InChI=1S/Bi.Na.3O/q;+1;;;-1
  • [O-][Bi](=O)=O.[Na+]
Properties
NaBiO3
Molar mass 279.968 g/mol
AppearanceYellow to yellowish-brown odorless powder [1]
Density 6.50 g/cm3
Insoluble in cold, decomposes in hot water [2]
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H302, H315, H319, H335
P261, P264, P270, P271, P280, P301+P312, P302+P352, P304+P340, P305+P351+P338, P312, P321, P330, P332+P313, P337+P313, P362, P403+P233, P405, P501
Lethal dose or concentration (LD, LC):
420 mg/kg (rat, oral) [1]
Related compounds
Other anions
Sodium antimonate
Other cations
Potassium bismuthate
Related compounds
Sodium hexafluorobismuthate(V)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Sodium bismuthate is an inorganic compound, and a strong oxidiser with chemical formula NaBiO3. [3] It is somewhat hygroscopic, [2] but not soluble in cold water, which can be convenient since the reagent can be easily removed after the reaction. It is one of the few water insoluble sodium salts. Commercial samples may be a mixture of bismuth(V) oxide, sodium carbonate and sodium peroxide. [4]

Contents

A related compound with the approximate formula Na3BiO4 also exists. [5]

Structure

Sodium bismuthate adopts an ilmenite structure, consisting of octahedral bismuth(V) centers and sodium cations. The average Bi–O distance is 2.116 Å. The ilmenite structure is related to the corundum structure (Al2O3) with a layer structure formed by close packed oxygen atoms with the two different cations alternating in octahedral sites. [6]

Synthesis

Bismuth oxidizes to the +V oxidation state only with difficulty in the absence of alkali. Synthesis is performed by making a suspension of bismuth trioxide in a boiling sodium hydroxide solution. It is then oxidized by addition of bromine to form sodium bismuthate. [7]

Bi2O3 + 6 NaOH + 2 Br2 → 2 NaBiO3 + 4 NaBr + 3 H2O

Another synthesis of NaBiO3 involves oxidizing a mixture of sodium oxide and bismuth(III) oxide with air (as the source of O2): [8]

Na2O + Bi2O3 + O2 → 2 NaBiO3

The procedure is analogous to the oxidation of manganese dioxide in alkali to give sodium manganate.

Vial of NaBiO3 NaBiO3.png
Vial of NaBiO3

Reactions

Storage conditions with moisture and high temperatures are detrimental to sodium bismuthate, as it oxidizes water, decomposing into sodium hydroxide and bismuth(III) oxide: [2]

2 NaBiO3 + H2O → 2 NaOH + Bi2O3 + O2

It is decomposed faster by acids. In HCl, NaBiO3 also reacts to form chlorine gas. [2]

NaBiO3 may be used to detect manganese qualitatively and quantitatively. As a strong oxidizer, it converts almost any manganese compound to permanganate, which is easily assayed spectrophotometrically. [3] To do this, some NaBiO3 and the sample are reacted in a hot solution of sulfuric acid or nitric acid. [2] Permanganate has a violet color and maximum absorbance at 510 nm. The reaction is:[ citation needed ]

2 Mn2+ + 5 NaBiO3 + 14 H+ → 2 MnO
4
+ 5 Bi3+ + 5 Na+ + 7 H2O

Sodium bismuthate can perform oxidative 1,2-cleavage on glycols, ketols and alpha hydroxy acids with no further oxidation of the (possible) aldehyde products: [9]

R2C(OH)–C(OH)–R2 → R2C=O + O=CR2
R2C(OH)–C(O)–R → R2C=O + RCOOH
R2C(OH)–COOH → R2C=O + CO2

These cleavages can be done in the presence of acetic or phosphoric acid at room temperature. Alcohols like methanol or ethanol can be used as the reaction media, as they are oxidized slowly with sodium bismuthate. Lead tetraacetate performs similar reactions, but anhydrous conditions, as required in the use of lead tetraacetate, are not necessary for sodium bismuthate. [9]

NaBiO3 can be used for lab-scale plutonium separation (see bismuth phosphate process).

Safety

NaBiO3 is a mild mechanical irritant. Upon ingestion it is moderately toxic with symptoms akin to lead poisoning: abdominal pain and vomiting. Large doses cause diarrhea and death. Continued absorption of NaBiO3 into body causes permanent kidney damage. [1] These effects are due to the toxicity of bismuth. Oral absolute lethal dose (LD100) of NaBiO3 is 720 mg/kg for rats, and 510 mg/kg for rabbits. [10]

Related Research Articles

<span class="mw-page-title-main">Oxidizing agent</span> Chemical compound used to oxidize another substance in a chemical reaction

An oxidizing agent is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent. In other words, an oxidizer is any substance that oxidizes another substance. The oxidation state, which describes the degree of loss of electrons, of the oxidizer decreases while that of the reductant increases; this is expressed by saying that oxidizers "undergo reduction" and "are reduced" while reducers "undergo oxidation" and "are oxidized". Common oxidizing agents are oxygen, hydrogen peroxide, and the halogens.

<span class="mw-page-title-main">Potassium permanganate</span> Chemical compound

Potassium permanganate is an inorganic compound with the chemical formula KMnO4. It is a purplish-black crystalline salt, that dissolves in water as K+ and MnO
4
, an intensely pink to purple solution.

In chemistry, perxenates are salts of the yellow xenon-containing anion XeO4−
6
. This anion has octahedral molecular geometry, as determined by Raman spectroscopy, having O–Xe–O bond angles varying between 87° and 93°. The Xe–O bond length was determined by X-ray crystallography to be 1.875 Å.

<span class="mw-page-title-main">Permanganate</span> Chemical compound

A permanganate is a chemical compound with the manganate(VII) ion, MnO
4
, the conjugate base of permanganic acid. Because the manganese atom has a +7 oxidation state, the permanganate(VII) ion is a strong oxidising agent. The ion is a transition metal ion with a tetrahedral structure. Permanganate solutions are purple in colour and are stable in neutral or slightly alkaline media. The exact chemical reaction depends on the carbon-containing reactants present and the oxidant used. For example, trichloroethane (C2H3Cl3) is oxidised by permanganate ions to form carbon dioxide (CO2), manganese dioxide (MnO2), hydrogen ions (H+), and chloride ions (Cl).

<span class="mw-page-title-main">Manganate</span> Chemical compound

In inorganic nomenclature, a manganate is any negatively charged molecular entity with manganese as the central atom. However, the name is usually used to refer to the tetraoxidomanganate(2−) anion, MnO2−
4
, also known as manganate(VI) because it contains manganese in the +6 oxidation state. Manganates are the only known manganese(VI) compounds.

<span class="mw-page-title-main">Sodium manganate</span> Chemical compound

Sodium manganate is the inorganic compound with the formula Na2Mn O4. This deep green solid is a rarely encountered analogue of the related salt K2MnO4. Sodium manganate is rare because it cannot be readily prepared from the oxidation of manganese dioxide and sodium hydroxide. Instead this oxidation reaction tends to stop at producing sodium hypomanganate, Na3MnO4, and even this Mn(V) salt is unstable in solution. Sodium manganate can be produced by reduction of sodium permanganate under basic conditions:

<span class="mw-page-title-main">Telluric acid</span> Chemical compound (Te(OH)6)

Telluric acid, or more accurately orthotelluric acid, is a chemical compound with the formula Te(OH)6, often written as H6TeO6. It is a white crystalline solid made up of octahedral Te(OH)6 molecules which persist in aqueous solution. In the solid state, there are two forms, rhombohedral and monoclinic, and both contain octahedral Te(OH)6 molecules, containing one hexavalent tellurium (Te) atom in the +6 oxidation state, attached to six hydroxyl (–OH) groups, thus, it can be called tellurium(VI) hydroxide. Telluric acid is a weak acid which is dibasic, forming tellurate salts with strong bases and hydrogen tellurate salts with weaker bases or upon hydrolysis of tellurates in water. It is used as tellurium-source in the synthesis of oxidation catalysts.

<span class="mw-page-title-main">Sodium dithionate</span> Chemical compound

Sodium dithionate Na2S2O6 is an important compound for inorganic chemistry. It is also known under names disodium dithionate, sodium hyposulfate, and sodium metabisulfate. The sulfur can be considered to be in its +5 oxidation state.

Basic oxides are oxides that show basic properties, in opposition to acidic oxides. A basic oxide can either react with water to form a base, or with an acid to form a salt and water in a neutralization reaction.

In chemistry, hypomanganate, also called manganate(V) or tetraoxidomanganate(3−), is a trivalent anion (negative ion) composed of manganese and oxygen, with formula MnO3−
4
.

Potassium hypomanganate is the inorganic compound with the formula K3MnO4. Also known as potassium manganate(V), this bright blue solid is a rare example of a salt with the hypomanganate or manganate(V) anion, where the manganese atom is in the +5 oxidation state. It is an intermediate in the production of potassium permanganate and the industrially most important Mn(V) compound.

<span class="mw-page-title-main">Manganese heptoxide</span> Chemical compound

Manganese(VII) oxide (manganese heptoxide) is an inorganic compound with the formula Mn2O7. Manganese heptoxide is a volatile liquid with an oily consistency. It is a highly reactive and powerful oxidizer that reacts explosively with nearly any organic compound. It was first described in 1860. It is the acid anhydride of permanganic acid.

Technetium compounds are chemical compounds containing the chemical element technetium. Technetium can form multiple oxidation states, but often forms in the +4 and +7 oxidation states. Because technetium is radioactive, technetium compounds are extremely rare on Earth.

<span class="mw-page-title-main">Bismuth chloride</span> Chemical compound

Bismuth chloride (or butter of bismuth) is an inorganic compound with the chemical formula BiCl3. It is a covalent compound and is the common source of the Bi3+ ion. In the gas phase and in the crystal, the species adopts a pyramidal structure, in accord with VSEPR theory.

<span class="mw-page-title-main">Sodium permanganate</span> Chemical compound

Sodium permanganate is the inorganic compound with the formula NaMnO4. It is closely related to the more commonly encountered potassium permanganate, but it is generally less desirable, because it is more expensive to produce. It is mainly available as the monohydrate. This salt absorbs water from the atmosphere and has a low melting point. Being about 15 times more soluble than KMnO4, sodium permanganate finds some applications where very high concentrations of MnO4 are sought.

Permanganometry is one of the techniques used in chemical quantitative analysis. It is a redox titration that involves the use of permanganates to measure the amount of analyte present in unknown chemical samples. It involves two steps, namely the titration of the analyte with potassium permanganate solution and then the standardization of potassium permanganate solution with standard sodium oxalate solution. The titration involves volumetric manipulations to prepare the analyte solutions.

Barium permanganate is a chemical compound, with the formula Ba(MnO4)2. It forms violet to brown crystals that are sparingly soluble in water.

<span class="mw-page-title-main">Bismuth oxynitrate</span> Chemical compound

Bismuth oxynitrate is the name applied to a number of compounds that contain Bi3+, nitrate ions and oxide ions and which can be considered as compounds formed from Bi2O3, N2O5 and H2O. Other names for bismuth oxynitrate include bismuth subnitrate and bismuthyl nitrate. In older texts bismuth oxynitrate is often simply described as BiONO3 or basic bismuth nitrate. Bismuth oxynitrate was once called magisterium bismuti or bismutum subnitricum, and was used as a white pigment, in beauty care, and as a gentle disinfectant for internal and external use. It is also used to form Dragendorff's reagent, which is used as a TLC stain.

<span class="mw-page-title-main">Chemical chameleon</span>

The chemical chameleon is a redox reaction, well known from classroom demonstrations, that exploits the dramatic color changes associated with the various oxidation states of manganese.

References

Citations

  1. 1 2 3 "Sodium bismuthate". Mallinckrodt Baker. 2007-06-19.
  2. 1 2 3 4 5 The Merck index (12th ed.). Chapman & Hall Electronic Pub. Division. 2000. p. 1357. ISBN   9781584881292.
  3. 1 2 Greenwood NN, Earnshaw A (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  4. Suzuki, pp. 1-20
  5. Sascha V (2004). Konformationsaufklärung anorganischer Oxoanionen des Kohlenstoffs und Festkörpersynthesen durch Elektrokristallisation von Ag3O4 und Na3BiO4 (PDF) (Ph.D.) (in German). Max-Planck-Institut für Festkörperforschung, Stuttgart. doi:10.18419/opus-6540.
  6. Kumada N, Kinomura N, Sleight AW (2000). "Neutron powder diffraction refinement of ilmenite-type bismuth oxides: ABiO3 (A = Na, Ag)". Materials Research Bulletin . 35 (14–15): 2397–2402. doi:10.1016/S0025-5408(00)00453-0.  via ScienceDirect  (Subscription may be required or content may be available in libraries.)
  7. hrsg. von Georg Brauer. Unter Mitarb. von M. Baudler (1975). Handbuch der präparativen anorganischen Chemie / 1 (in German). Stuttgart: Enke. p. 604. ISBN   3-432-02328-6. OCLC   310719485.
  8. Greenwood NN (1997). Chemistry of the elements (2nd ed.). Butterworth-Heinemann. p. 578. ISBN   9780080379418.
  9. 1 2 Suzuki, p. 373
  10. Dusinska M, et al. (2013-12-12). "Opinion on bismuth citrate" (PDF). Scientific Committee on Consumer Safety. doi:10.2772/74214. ISBN   9789279301223. SCCS Number: SCCS/1499/12.