Sodium hexachloroiridate(III)

Last updated
Sodium hexachloroiridate(III)
Sodium hexachloroiridate(III) hydrate.jpg
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.036.162 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 239-795-6
PubChem CID
  • InChI=1S/6ClH.Ir.3Na/h6*1H;;;;/q;;;;;;+3;3*+1/p-6
    Key: GSONQQIOULBMRS-UHFFFAOYSA-H
  • [Na+].[Na+].[Na+].Cl[Ir-3](Cl)(Cl)(Cl)(Cl)Cl
Properties
Cl6IrNa3
Molar mass 473.89 g·mol−1
31.46 g/100 g (15°C) [1]
Solubility insoluble in ethanol, very slightly soluble in acetone [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Sodium hexachloroiridate(III) is an inorganic compound with the chemical formula Na3IrCl6.

Contents

Preparation

Sodium hexachloroiridate(III) can be produced by the reduction of sodium hexachloroiridate(IV) with Fe2+, oxalate or hydrogen sulfide. [2]

It can also be produced by heating iridium metal with NaCl and Cl2. [3]

Reactions

Sodium hexachloroiridate(III) will get dehydrated at 110°C, and reversible decomposes at 550°C. [1]

2 Na3IrCl6 ⇌ 2 Ir + 6 NaCl + 3 Cl2

In air, sodium hexachloroiridate(III) will be oxidized at 450°C. [1]

2 Na3IrCl6 + 2 O2 → 2 IrO2 + 6 NaCl + 3 Cl2

It reacts with hydrochloric acid to form hydrogen hexachloroiridate(III). [4]

It also reacts with ammonia water in sealed tube at 145°C to form [Ir(NH3)6]Cl3. [3]

Related Research Articles

<span class="mw-page-title-main">Titanium tetrachloride</span> Inorganic chemical compound

Titanium tetrachloride is the inorganic compound with the formula TiCl4. It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. TiCl4 is a volatile liquid. Upon contact with humid air, it forms thick clouds of titanium dioxide and hydrochloric acid, a reaction that was formerly exploited for use in smoke machines. It is sometimes referred to as “tickle” or “tickle 4”, as a phonetic representation of the symbols of its molecular formula.

Cuprates are a class of compounds that contain copper (Cu) atom(s) in an anion. They can be broadly categorized into two main types:

<span class="mw-page-title-main">Lead(II) chloride</span> Chemical compound

Lead(II) chloride (PbCl2) is an inorganic compound which is a white solid under ambient conditions. It is poorly soluble in water. Lead(II) chloride is one of the most important lead-based reagents. It also occurs naturally in the form of the mineral cotunnite.

<span class="mw-page-title-main">Manganese(II) chloride</span> Chemical compound

Manganese(II) chloride is the dichloride salt of manganese, MnCl2. This inorganic chemical exists in the anhydrous form, as well as the dihydrate (MnCl2·2H2O) and tetrahydrate (MnCl2·4H2O), with the tetrahydrate being the most common form. Like many Mn(II) species, these salts are pink, with the paleness of the color being characteristic of transition metal complexes with high spin d5 configurations.

<span class="mw-page-title-main">Vaska's complex</span> Chemical compound

Vaska's complex is the trivial name for the chemical compound trans-carbonylchlorobis(triphenylphosphine)iridium(I), which has the formula IrCl(CO)[P(C6H5)3]2. This square planar diamagnetic organometallic complex consists of a central iridium atom bound to two mutually trans triphenylphosphine ligands, carbon monoxide and a chloride ion. The complex was first reported by J. W. DiLuzio and Lauri Vaska in 1961. Vaska's complex can undergo oxidative addition and is notable for its ability to bind to O2 reversibly. It is a bright yellow crystalline solid.

<span class="mw-page-title-main">Rhodium(III) chloride</span> Chemical compound

Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic solids featuring octahedral Rh(III) centres. Depending on the value of n, the material is either a dense brown solid or a soluble reddish salt. The soluble trihydrated (n = 3) salt is widely used to prepare compounds used in homogeneous catalysis, notably for the industrial production of acetic acid and hydroformylation.

<span class="mw-page-title-main">Iridium(III) chloride</span> Chemical compound

Iridium(III) chloride is the inorganic compound with the formula IrCl3. The anhydrous compound is relatively rare, but the related hydrate is much more commonly encountered. The anhydrous salt has two polymorphs, α and β, which are brown and red colored respectively. More commonly encountered is the hygroscopic dark green trihydrate IrCl3(H2O)3 which is a common starting point for iridium chemistry.

<span class="mw-page-title-main">Gold(III) chloride</span> Chemical compound

Gold(III) chloride, traditionally called auric chloride, is an inorganic compound of gold and chlorine with the molecular formula Au2Cl6. The "III" in the name indicates that the gold has an oxidation state of +3, typical for many gold compounds. It has two forms, the monohydrate (AuCl3·H2O) and the anhydrous form, which are both hygroscopic and light-sensitive solids. This compound is a dimer of AuCl3. This compound has a few uses, such as an oxidizing agent and for catalyzing various organic reactions.

<span class="mw-page-title-main">Tin(II) chloride</span> Chemical compound

Tin(II) chloride, also known as stannous chloride, is a white crystalline solid with the formula SnCl2. It forms a stable dihydrate, but aqueous solutions tend to undergo hydrolysis, particularly if hot. SnCl2 is widely used as a reducing agent (in acid solution), and in electrolytic baths for tin-plating. Tin(II) chloride should not be confused with the other chloride of tin; tin(IV) chloride or stannic chloride (SnCl4).

<span class="mw-page-title-main">Thorium(IV) chloride</span> Chemical compound

Thorium(IV) chloride describes a family of inorganic compounds with the formula ThCl4(H2O)n. Both the anhydrous and tetrahydrate (n = 4) forms are known. They are hygroscopic, water-soluble white salts.

Osmium compounds are compounds containing the element osmium (Os). Osmium forms compounds with oxidation states ranging from −2 to +8. The most common oxidation states are +2, +3, +4, and +8. The +8 oxidation state is notable for being the highest attained by any chemical element aside from iridium's +9 and is encountered only in xenon, ruthenium, hassium, iridium, and plutonium. The oxidation states −1 and −2 represented by the two reactive compounds Na
2
[Os
4
(CO)
13
]
and Na
2
[Os(CO)
4
]
are used in the synthesis of osmium cluster compounds.

Martin Arthur Bennett FRS is an Australian inorganic chemist. He gained recognition for studies on the co-ordination chemistry of tertiary phosphines, olefins, and acetylenes, and the relationship of their behaviour to homogeneous catalysis.

<span class="mw-page-title-main">Organoiridium chemistry</span> Chemistry of organometallic compounds containing an iridium-carbon bond

Organoiridium chemistry is the chemistry of organometallic compounds containing an iridium-carbon chemical bond. Organoiridium compounds are relevant to many important processes including olefin hydrogenation and the industrial synthesis of acetic acid. They are also of great academic interest because of the diversity of the reactions and their relevance to the synthesis of fine chemicals.

<span class="mw-page-title-main">Metal halides</span>

Metal halides are compounds between metals and halogens. Some, such as sodium chloride are ionic, while others are covalently bonded. A few metal halides are discrete molecules, such as uranium hexafluoride, but most adopt polymeric structures, such as palladium chloride.

<span class="mw-page-title-main">Pentamethylcyclopentadienyl ruthenium dichloride dimer</span> Chemical compound

Pentamethylcyclopentadienyl ruthenium dichloride is an organoruthenium chemistry with the formula [(C5(CH3)5)RuCl2]2, commonly abbreviated [Cp*RuCl2]2. This brown paramagnetic solid is a reagent in organometallic chemistry. It is an unusual example of a compound that exists as isomers that differ in the intermetallic separation, a difference that is manifested in a number of physical properties.

<span class="mw-page-title-main">Ammonium hexachloroiridate(IV)</span> Chemical compound

Ammonium hexachloroiridate(IV) is the inorganic compound with the formula (NH4)2[IrCl6]. This dark red solid is the ammonium salt of the iridium(IV) complex [IrCl6]2−. It is a commercially important iridium compound one of the most common complexes of iridium(IV). A related but ill-defined compound is iridium tetrachloride, which is often used interchangeably.

<span class="mw-page-title-main">Transition metal chloride complex</span> Coordination complex

In chemistry, a transition metal chloride complex is a coordination complex that consists of a transition metal coordinated to one or more chloride ligand. The class of complexes is extensive.

<span class="mw-page-title-main">Berkelium(III) chloride</span> Chemical compound

Berkelium(III) chloride also known as berkelium trichloride, is a chemical compound with the formula BkCl3. It is a water-soluble green salt with a melting point of 603 °C. This compound forms the hexahydrate, BkCl3·6H2O.

Iridium compounds are compounds containing the element iridium (Ir). Iridium forms compounds in oxidation states between −3 and +9, but the most common oxidation states are +1, +2, +3, and +4. Well-characterized compounds containing iridium in the +6 oxidation state include IrF6 and the oxides Sr2MgIrO6 and Sr2CaIrO6. iridium(VIII) oxide was generated under matrix isolation conditions at 6 K in argon. The highest oxidation state (+9), which is also the highest recorded for any element, is found in gaseous [IrO4]+.

References

  1. 1 2 3 4 Pannetier, G.; Macarovici, D.; Gaultier, M. (1972). "Les complexes halogenes d'iridium". Journal of Thermal Analysis (in French). Springer Science and Business Media LLC. 4 (2): 177–186. doi:10.1007/bf01911927. ISSN   0368-4466. S2CID   102384528.
  2. Fergusson, JE; Rankin, DA (1983). "The chloro and bromo complexes of iridium(III) and iridium(IV). I. Preparation". Australian Journal of Chemistry. CSIRO Publishing. 36 (5): 863. doi:10.1071/ch9830863. ISSN   0004-9425.
  3. 1 2 Housecroft, Catherine E. (2006-03-15), "Iridium: Inorganic & Coordination Chemistry", Encyclopedia of Inorganic Chemistry, Chichester, UK: John Wiley & Sons, Ltd, doi:10.1002/0470862106.ia101, ISBN   0470860782
  4. Venediktov, A. B.; Kultyshev, R. G. Polynuclear iridium(III) chlorides. Zhurnal Neorganicheskoi Khimii, 1989. 34 (4). 909-915. ISSN   0044-457X