Sodium cyanoborohydride

Last updated
Sodium cyanoborohydride
Sodium-cyanoborohydride-2D.png
Names
IUPAC name
Sodium cyanoboranuide
Other names
Sodium cyanotrihydridoborate
Identifiers
3D model (JSmol)
ECHA InfoCard 100.043.001 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 247-317-2
PubChem CID
UNII
  • InChI=1S/CH3BN.Na/c2-1-3;/h2H3;/q-1;+1
  • [BH3-]C#N.[Na+]
Properties
Na[BH3(CN)]
Molar mass 62.84 g·mol−1
Appearancewhite powder, hygroscopic
Density 1.083 g/cm (25°C)3
Melting point 242 °C (468 °F; 515 K) decomposes
212 g/(100 mL) (29 °C)
Solubility soluble in water, ethanol, diglyme, tetrahydrofuran, methanol
slightly soluble in methanol
insoluble in diethyl ether
Structure
4 at boron atom
Tetrahedral at boron atom
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Flammable solid, fatal if swallowed, in contact with skin or if inhaled
Contact with acids liberates very toxic gas
Contact with water liberates highly flammable gas
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-acid.svg GHS-pictogram-skull.svg
Danger
H228, H300, H310, H314, H330, H410
P210, P260, P264, P273, P280, P284
NFPA 704 (fire diamond)
NFPA 704.svgHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazards (white): no code
4
3
2
5 mg/m3 (TWA)
Safety data sheet (SDS)Sigma Aldrich [1]
Related compounds
Other anions
Sodium borohydride
Related compounds
Lithium aluminium hydride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Sodium cyanoborohydride is a chemical compound with the formula Na [ B H 3(C N)]. It is a colourless salt used in organic synthesis for chemical reduction including that of imines and carbonyls. Sodium cyanoborohydride is a milder reductant than other conventional reducing agents. [2]

Contents

Structure

Sodium cyanoborohydride is a salt. The cationic sodium ion, [Na]+, interacts with the anionic cyanoborohydride ion, [BH3(CN)]. The anionic component of the salt is tetrahedral at the boron atom.

The electron-withdrawing cyanide substituent draws electron density away from the negatively charged boron; thus, reducing the electrophilic capabilities of the anionic component. [2] This electronic phenomenon causes sodium cyanoborohydride to have more mild reducing qualities than other reducing agents. For example, Na[BH3(CN)] is less reducing than its counterpart sodium borohydride, containing [BH4]. [2]

Uses

Sodium cyanoborohydride is a mild reducing agent. It is generally used for the reduction of imines. These reactions occur <pH 7 because the iminium ions are the actual substrates. [3]

Reductive amination, sometimes called the Borch reaction, is the conversion of a carbonyl into an amine through an intermediate imine. [4] The carbonyl is first treated with ammonia to promote imine formation by nucleophilic attack. The imine is then reduced to an amine by sodium cyanoborohydride. This reaction works on both aldehydes and ketones. The carbonyl can be treated with ammonia, a primary amine, or a secondary amine to produce, respectively, 1°, 2°, and 3° amines. [5]

Aromatic ketones and aldehydes can be reductively deoxygenated using sodium cyanoborohydride. [6] This means that the carbonyl oxygen is being removed completely from the molecule. Deoxygenation using sodium cyanoborohydride is often done in the presence of trimethylsilyl chloride, or TMSCl. [6]

Preparation

Sodium cyanoborohydride can be purchase from most chemical suppliers. It can be synthesized by combining sodium cyanide and borane tetrahydrofuran. [7]

BH3·thf + NaCN → NaBH3CN + thf

Selectivity

Since sodium cyanoborohydride is a mild reducing agent, it gives good chemoselectivity for reaction with certain functional groups in the presence of others. For example, sodium cyanoborohydride is generally incapable of reducing amides, ethers, esters and lactones, nitriles, or epoxides. [8] Therefore, it can selectively reduce some functionalities in the presence of others.

Some examples of selective reduction include:

The selectivity of this reducing agent makes it an important tool in organic synthesis. It allows for specific modifications to be made to complex organic molecules.

History

Georg Wittig was the first to synthesize a cyanoborohydride by treating lithium borohydride with hydrogen cyanide in 1951. [8] The corresponding compound, sodium cyanoborohydride, was synthesized following a similar rationale by reacting sodium borohydride with hydrogen cyanide. [10] The synthesis was later refined to use sodium cyanide and borane in THF making the process safer. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

<span class="mw-page-title-main">Sodium borohydride</span> Chemical compound

Sodium borohydride, also known as sodium tetrahydridoborate and sodium tetrahydroborate, is an inorganic compound with the formula NaBH4. It is a white crystalline solid, usually encountered as an aqueous basic solution. Sodium borohydride is a reducing agent that finds application in papermaking and dye industries. It is also used as a reagent in organic synthesis.

The Wolff–Kishner reduction is a reaction used in organic chemistry to convert carbonyl functionalities into methylene groups. In the context of complex molecule synthesis, it is most frequently employed to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step. As such, there is no obvious retron for this reaction. The reaction was reported by Nikolai Kischner in 1911 and Ludwig Wolff in 1912.

<span class="mw-page-title-main">Organoboron chemistry</span> Study of compounds containing a boron-carbon bond

Organoboron chemistry or organoborane chemistry studies organoboron compounds, also called organoboranes. These chemical compounds combine boron and carbon; typically, they are organic derivatives of borane (BH3), as in the trialkyl boranes.

<span class="mw-page-title-main">Organic redox reaction</span> Redox reaction that takes place with organic compounds

Organic reductions or organic oxidations or organic redox reactions are redox reactions that take place with organic compounds. In organic chemistry oxidations and reductions are different from ordinary redox reactions, because many reactions carry the name but do not actually involve electron transfer. Instead the relevant criterion for organic oxidation is gain of oxygen and/or loss of hydrogen. Simple functional groups can be arranged in order of increasing oxidation state. The oxidation numbers are only an approximation:

Reductive amination is a form of amination that involves the conversion of a carbonyl group to an amine via an intermediate imine. The carbonyl group is most commonly a ketone or an aldehyde. It is a common method to make amines and is widely used in green chemistry since it can be done catalytically in one-pot under mild conditions. In biochemistry, dehydrogenase enzymes use reductive amination to produce the amino acid, glutamate. Additionally, there is ongoing research on alternative synthesis mechanisms with various metal catalysts which allow the reaction to be less energy taxing, and require milder reaction conditions. Investigation into biocatalysts, such as imine reductases, have allowed for higher selectivity in the reduction of chiral amines which is an important factor in pharmaceutical synthesis.

<span class="mw-page-title-main">Corey–Itsuno reduction</span>

The Corey–Itsuno reduction, also known as the Corey–Bakshi–Shibata (CBS) reduction, is a chemical reaction in which a prochiral ketone is enantioselectively reduced to produce the corresponding chiral, non-racemic alcohol. The oxazaborolidine reagent which mediates the enantioselective reduction of ketones was previously developed by the laboratory of Itsuno and thus this transformation may more properly be called the Itsuno-Corey oxazaborolidine reduction.

A pinacol coupling reaction is an organic reaction in which a carbon–carbon bond is formed between the carbonyl groups of an aldehyde or a ketone in presence of an electron donor in a free radical process. The reaction product is a vicinal diol. The reaction is named after pinacol, which is the product of this reaction when done with acetone as reagent. The reaction is usually a homocoupling but intramolecular cross-coupling reactions are also possible. Pinacol was discovered by Wilhelm Rudolph Fittig in 1859.

<span class="mw-page-title-main">Sodium bis(2-methoxyethoxy)aluminium hydride</span> Chemical compound

Sodium bis(2-methoxyethoxy)aluminium hydride (SMEAH; trade names Red-Al, Synhydrid, Vitride) is a complex hydride reductant with the formula NaAlH2(OCH2CH2OCH3)2. The trade name Red-Al refers to its being a reducing aluminium compound. It is used predominantly as a reducing agent in organic synthesis. The compound features a tetrahedral aluminium center attached to two hydride and two alkoxide groups, the latter derived from 2-methoxyethanol. Commercial solutions are colorless/pale yellow and viscous. At low temperatures (below -60 °C), the solution solidifies to a glassy pulverizable substance with no sharp melting point.

<span class="mw-page-title-main">Galantamine total synthesis</span>

The article concerns the total synthesis of galanthamine, a drug used for the treatment of mild to moderate Alzheimer's disease.

In chemistry, a Grob fragmentation is an elimination reaction that breaks a neutral aliphatic chain into three fragments: a positive ion spanning atoms 1 and 2, an unsaturated neutral fragment spanning positions 3 and 4, and a negative ion comprising the rest of the chain.

Luche reduction is the selective organic reduction of α,β-unsaturated ketones to allylic alcohols. The active reductant is described as "cerium borohydride", which is generated in situ from NaBH4 and CeCl3(H2O)7.

<span class="mw-page-title-main">Strychnine total synthesis</span>

Strychnine total synthesis in chemistry describes the total synthesis of the complex biomolecule strychnine. The first reported method by the group of Robert Burns Woodward in 1954 is considered a classic in this research field.

In nitrile reduction a nitrile is reduced to either an amine or an aldehyde with a suitable chemical reagent.

<span class="mw-page-title-main">Borane dimethylsulfide</span> Chemical compound

Borane dimethylsulfide (BMS) is a chemical compound with the chemical formula BH3·S(CH3)2. It is an adduct between borane molecule and dimethyl sulfide molecule. It is a complexed borane reagent that is used for hydroborations and reductions. The advantages of BMS over other borane reagents, such as borane-tetrahydrofuran, are its increased stability and higher solubility. BMS is commercially available at much higher concentrations than its tetrahydrofuran counterpart and does not require sodium borohydride as a stabilizer, which could result in undesired side reactions. In contrast, BH3·THF requires sodium borohydride to inhibit reduction of THF to tributyl borate. BMS is soluble in most aprotic solvents.

<span class="mw-page-title-main">Carbonyl reduction</span> Organic reduction of any carbonyl group by a reducing agent

In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. Ketones, aldehydes, carboxylic acids, esters, amides, and acid halides - some of the most pervasive functional groups, -comprise carbonyl compounds. Carboxylic acids, esters, and acid halides can be reduced to either aldehydes or a step further to primary alcohols, depending on the strength of the reducing agent. Aldehydes and ketones can be reduced respectively to primary and secondary alcohols. In deoxygenation, the alcohol group can be further reduced and removed altogether by replacement with H.

<span class="mw-page-title-main">Reductions with samarium(II) iodide</span>

Reductions with samarium(II) iodide involve the conversion of various classes of organic compounds into reduced products through the action of samarium(II) iodide, a mild one-electron reducing agent.

<span class="mw-page-title-main">Sodium triacetoxyborohydride</span> Chemical compound

Sodium triacetoxyborohydride, also known as sodium triacetoxyhydroborate, commonly abbreviated STAB, is a chemical compound with the formula Na[(CH3COO)3BH]. Like other borohydrides, it is used as a reducing agent in organic synthesis. This colourless salt is prepared by protonolysis of sodium borohydride with acetic acid:

<span class="mw-page-title-main">Borane–tetrahydrofuran</span> Chemical compound

Borane–tetrahydrofuran is an adduct derived from borane and tetrahydrofuran (THF). These solutions, which are colorless, are used for reductions and hydroboration, reactions that are useful in synthesis of organic compounds. The use of borane–tetrahydrofuran has been displaced by borane–dimethylsulfide, which has a longer shelf life and effects similar transformations.

Borane <i>tert</i>-butylamine Chemical compound

Borane tert-butylamine is an amine borane complex derived from tert-butylamine and borane. It is a colorless solid.

References

  1. Sigma-Aldrich Co., Sodium cyanoborohydride. Retrieved on 2014-11-09.
  2. 1 2 3 Baxter, Ellen W.; Reitz, Allen B. (9 January 2002). "Reductive Aminations of Carbonyl Compounds with Borohydride and Borane Reducing Agents". Organic Reactions: 1–714. doi:10.1002/0471264180.or059.01. ISBN   0-471-26418-0.
  3. Hutchins, Robert O.; Hutchins, Marygail K.; Crawley, Matthew L.; Mercado-Marin, Eduardo V.; Sarpong, Richmond (2016). "Sodium Cyanoborohydride". Encyclopedia of Reagents for Organic Synthesis. pp. 1–14. doi:10.1002/047084289X.rs059.pub3. ISBN   978-0-470-84289-8.
  4. Richard F. Borch (1988). "Reductive Amination with Sodium Cyanoborohydride: N,N-Dimethylcyclohexylamine". Organic Syntheses ; Collected Volumes, vol. 6, p. 499.
  5. Richard F. Borch and Mark D. Bernstein and H. Dupont Durst (1971). "Cyanohydridoborate Anion as a Selective Reducing Agent". J. Am. Chem. Soc. 93 (12): 2897–2904. doi:10.1021/ja00741a013.
  6. 1 2 Box, Vernon G. S.; Meleties, Panayiotis C. (1998-09-24). "Reductive, selective deoxygenation of acylbenzo[b]furans, aromatic aldehydes and ketones with NaBH3CN-TMSCl". Tetrahedron Letters. 39 (39): 7059–7062. doi:10.1016/S0040-4039(98)01519-6. ISSN   0040-4039.
  7. Hui, Benjamin C. (October 1980). "Synthesis and properties of borohydride derivatives". Inorganic Chemistry. 19 (10): 3185–3186. doi:10.1021/ic50212a075. ISSN   0020-1669.
  8. 1 2 3 4 LANE, Clinton F. (1975). "Sodium Cyanoborohydride - A Highly Selective Reducing Agent for Organic Functional Groups". Synthesis. 1975 (3): 135–146. doi:10.1055/s-1975-23685. ISSN   0039-7881. S2CID   95157786.
  9. Paul, Avishek; Shipman, Michael A.; Onabule, Dolapo Y.; Sproules, Stephen; Symes, Mark D. (2021-04-15). "Selective aldehyde reductions in neutral water catalysed by encapsulation in a supramolecular cage". Chemical Science. 12 (14): 5082–5090. doi:10.1039/D1SC00896J. ISSN   2041-6539. PMC   8179549 . PMID   34163748.
  10. 1 2 Abdel-Magid, Ahmed F., ed. (1996-08-13). Reductions in Organic Synthesis: Recent Advances and Practical Applications. ACS Symposium Series. Vol. 641. Washington, DC: American Chemical Society. doi:10.1021/bk-1996-0641.ch001. ISBN   978-0-8412-3381-2.