Sodium tetrathionate

Last updated
Sodium tetrathionate dihydrate
Sodium tetrathionate.png
Names
IUPAC name
Sodium (sulfonatodisulfanyl)sulfonate dihydrate
Identifiers
3D model (JSmol)
ECHA InfoCard 100.208.917 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
  • InChI=1S/2Na.H2O6S4.2H2O/c;;1-9(2,3)7-8-10(4,5)6;;/h;;(H,1,2,3)(H,4,5,6);2*1H2/q2*+1;;;/p-2
    Key: HAEPBEMBOAIUPN-UHFFFAOYSA-L
  • O.O.[O-]S(=O)(=O)SSS(=O)(=O)[O-].[Na+].[Na+]
Properties
Na2S4O6
Molar mass 306.2665 g/mol (dihydrate)
Appearancewhite powder
Density 2.1 g/mL (25 °C)
30.6 g/L (20 °C)
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Sodium tetrathionate is a salt of sodium and tetrathionate with the formula Na2S4O6.xH2O. The salt normally is obtained as the dihydrate (x = 2). It is a colorless, water-soluble solid. It is a member of the polythionates, which have the general formula [Sn(SO3)2]2-. Other members include trithionite (n = 1), pentathionate (n = 3), hexathionate (n = 4). [1]

Sodium tetrathionate is formed by the oxidation of sodium thiosulfate (Na2S2O3), e.g. by the action of iodine: [1]

2 Na2S2O3 + I2 → Na2S4O6 + 2 NaI

The reaction is signaled by the decoloration of iodine. This reaction is the basis of iodometric titrations.

Other methods include the coupling of sodium bisulfite with disulfur dichloride: [1]

2 NaHSO3 + S2Cl2 → Na2S4O6 + 2 HCl

The ion has ideal C2 symmetry, like H2S2. The S-S-S dihedral angle is nearly 90°. The central S-S distance is 2.115 Å, 0.01 Å longer than the two other S-S distances as well as those distances in most polysulfanes. [2]

Structure of tetrathionate as its dihydrated sodium salt. EntryWithCollCode40833.png
Structure of tetrathionate as its dihydrated sodium salt.

Related Research Articles

<span class="mw-page-title-main">Sodium hydroxide</span> Chemical compound with formula NaOH

Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations Na+ and hydroxide anions OH.

<span class="mw-page-title-main">Sodium carbonate</span> Chemical compound

Sodium carbonate is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, odourless, water-soluble salts that yield alkaline solutions in water. Historically, it was extracted from the ashes of plants grown in sodium-rich soils, and because the ashes of these sodium-rich plants were noticeably different from ashes of wood, sodium carbonate became known as "soda ash". It is produced in large quantities from sodium chloride and limestone by the Solvay process, as well as by carbonating sodium hydroxide which is made using the Chlor-alkali process.

<span class="mw-page-title-main">Barium chloride</span> Chemical compound

Barium chloride is an inorganic compound with the formula BaCl2. It is one of the most common water-soluble salts of barium. Like most other water-soluble barium salts, it is a white powder, highly toxic, and imparts a yellow-green coloration to a flame. It is also hygroscopic, converting to the dihydrate BaCl2·2H2O, which are colourless crystals with a bitter salty taste. It has limited use in the laboratory and industry.

<span class="mw-page-title-main">Sodium thiosulfate</span> Chemical compound

Sodium thiosulfate is an inorganic compound with the formula Na2S2O3·(H2O)(x) .Typically it is available as the white or colorless pentahydrate, It is a white solid that dissolves well in water. The compound is a reducing agent and a ligand, and these properties underpin its applications.

<span class="mw-page-title-main">Polysulfide</span>

Polysulfides are a class of chemical compounds derived from anionic chains of sulfur atoms. There are two main classes of polysulfides: inorganic and organic. The inorganic polysulfides have the general formula S2−
n
. These anions are the conjugate bases of polysulfanes H2Sn. Organic polysulfides generally have the formulae R1SnR2, where R = alkyl or aryl.

In chemistry, the iodine value is the mass of iodine in grams that is consumed by 100 grams of a chemical substance. Iodine numbers are often used to determine the degree of unsaturation in fats, oils and waxes. In fatty acids, unsaturation occurs mainly as double bonds which are very reactive towards halogens, the iodine in this case. Thus, the higher the iodine value, the more unsaturations are present in the fat. It can be seen from the table that coconut oil is very saturated, which means it is good for making soap. On the other hand, linseed oil is highly unsaturated, which makes it a drying oil, well suited for making oil paints.

<span class="mw-page-title-main">Periodate</span> Negatively-charged molecule made of oxygen and iodine

Periodate is an anion composed of iodine and oxygen. It is one of a number of oxyanions of iodine and is the highest in the series, with iodine existing in oxidation state +7. Unlike other perhalogenates, such as perchlorate, it can exist in two forms: metaperiodateIO
4
and orthoperiodateIO5−
6
. In this regard it is comparable to the tellurate ion from the adjacent group. It can combine with a number of counter ions to form periodates, which may also be regarded as the salts of periodic acid.

<span class="mw-page-title-main">Sodium dithionite</span> Chemical compound

Sodium dithionite is a white crystalline powder with a sulfurous odor. Although it is stable in dry air, it decomposes in hot water and in acid solutions.

<span class="mw-page-title-main">Sodium dithionate</span> Chemical compound

Sodium dithionate Na2S2O6 is an important compound for inorganic chemistry. It is also known under names disodium dithionate, sodium hyposulfate, and sodium metabisulfate. The sulfur can be considered to be in its +5 oxidation state.

<span class="mw-page-title-main">Sodium orthovanadate</span> Chemical compound

Sodium orthovanadate is the inorganic compound with the chemical formula Na3V O4. It forms a dihydrate Na3VO4·2H2O. Sodium orthovanadate is a salt of the VO3−4 oxyanion. It is a colorless, water-soluble solid.

<span class="mw-page-title-main">Thiosulfate</span> Polyatomic ion (S2O3, charge –2)

Thiosulfate is an oxyanion of sulfur with the chemical formula S2O2−3. Thiosulfate also refers to the compounds containing this anion, which are the salts of thiosulfuric acid, e.g. sodium thiosulfate Na2S2O3. Thiosulfate also refers to the esters of thiosulfuric acid. The prefix thio- indicates that the thiosulfate is a sulfate with one oxygen replaced by sulfur. Thiosulfate is tetrahedral at the central S atom. Thiosulfate salts occur naturally. Thiosulfate ion has C3v symmetry, and is produced by certain biochemical processes. It rapidly dechlorinates water and is notable for its use to halt bleaching in the paper-making industry. Thiosulfate salts are mainly used in dying in textiles and the bleaching of natural substances.

<span class="mw-page-title-main">Rongalite</span> Chemical compound

Rongalite is a chemical compound with the molecular formula Na+HOCH2SO2. This salt has many additional names, including Rongalit, sodium hydroxymethylsulfinate, sodium formaldehyde sulfoxylate, and Bruggolite. It is listed in the European Cosmetics Directive as sodium oxymethylene sulfoxylate (INCI). It is water-soluble and generally sold as the dihydrate. The compound and its derivatives are widely used in the dye industry. The structure of this salt has been confirmed by X-ray crystallography.

<span class="mw-page-title-main">Sodium persulfate</span> Chemical compound

Sodium persulfate is the inorganic compound with the formula Na2S2O8. It is the sodium salt of peroxydisulfuric acid, H2S2O8, an oxidizing agent. It is a white solid that dissolves in water. It is almost non-hygroscopic and has good shelf-life.

Sodium atoms have 11 electrons, one more than the stable configuration of the noble gas neon. As a result, sodium usually forms ionic compounds involving the Na+ cation. Sodium is a reactive alkali metal and is much more stable in ionic compounds. It can also form intermetallic compounds and organosodium compounds. Sodium compounds are often soluble in water.

<span class="mw-page-title-main">Tetrathionate</span>

The tetrathionate anion, S
4
O2−
6
, is a sulfur oxyanion derived from the compound tetrathionic acid, H2S4O6. Two of the sulfur atoms present in the ion are in oxidation state 0 and two are in oxidation state +5. Alternatively, the compound can be viewed as the adduct resulting from the binding of S2−
2
to SO3. Tetrathionate is one of the polythionates, a family of anions with the formula [Sn(SO3)2]2−. Its IUPAC name is 2-(dithioperoxy)disulfate, and the name of its corresponding acid is 2-(dithioperoxy)disulfuric acid. The Chemical Abstracts Service identifies tetrathionate by the CAS Number 15536-54-6.

<span class="mw-page-title-main">Sodium aurothiosulfate</span> Chemical compound

Sodium aurothiosulfate, or sanocrysin, is the inorganic compound with the formula Na3[Au(S2O3)2]·2H2O. It is the trisodium salt of the coordination complex of gold(I), [Au(S2O3)2]3−. The dihydrate, which is colorless, crystallizes with two waters of crystallization. The compound has some medicinal properties as well as potential for hydrometallurgy.

<span class="mw-page-title-main">Sodium metaborate</span> Chemical compound

Sodium metaborate is a chemical compound of sodium, boron, and oxygen with formula NaBO2. However, the metaborate ion is trimeric in the anhydrous solid, therefore a more correct formula is Na3B3O6 or (Na+)3[B3O6]3−. The formula can be written also as Na2O·B2O3 to highlight the relation to the main oxides of sodium and boron. The name is also applied to several hydrates whose formulas can be written NaBO2·nH2O for various values of n.

<span class="mw-page-title-main">Polythionates</span>

Polythionates are oxyanions with the formula O3S−Sn−SO−3 (n ≥ 0). They occur naturally and are the products of redox reactions of thiosulfate. Polythionates are readily isolable, unlike the parent polythionic acids.

In organic chemistry, Wittig reagents are organophosphorus compounds of the formula R3P=CHR', where R is usually phenyl. They are used to convert ketones and aldehydes to alkenes:

<span class="mw-page-title-main">Potassium thiosulfate</span> Chemical compound

Potassium thiosulfate, commonly abbreviated KTS, is an inorganic compound with the formula K2S2O3. This salt can form multiple hydrates, such as the monohydrate, dihydrate, and the pentahydrate, all of which are white or colorless solids. It is used as a fertilizer.

References

  1. 1 2 3 Greenwood, N. N.; Earnshaw, A. (2 January 1991). Chemistry of the Elements - 3rd Edition. Elsevier. doi:10.1016/C2013-0-11881-8. ISBN   978-1-4832-8008-0. OCLC   1040594550 . Retrieved 2022-02-15.
  2. 1 2 P. C. Christidis; P. J. Rentzeperis; C. A. Bolos (4 January 1986). "Crystal structure and chirality of sodium tetrathionate dihydrate, Na2S4O6·2H2O". Zeitschrift für Kristallographie. 177 (1–2): 107–p116. Bibcode:1986ZK....177..107C. doi:10.1524/zkri.1986.177.1-2.107.