Sodium persulfate

Last updated
Sodium persulfate
Two sodium cations and one peroxodisulphate anion Natriumpersulfat.PNG
Two sodium cations and one peroxodisulphate anion
Ball-and-stick model of the crystal structure Sodium-persulfate-xtal-2006-3D-balls.png
Ball-and-stick model of the crystal structure
Sodium persulfate as a white powder Peroxodisiran sodny.JPG
Sodium persulfate as a white powder
Names
Other names
Sodium peroxodisulfate
Sodium peroxodisulphate
Sodium peroxydisulfate
Sodium peroxydisulphate
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.028.993 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 231-892-1
PubChem CID
RTECS number
  • SE0525000
UNII
UN number 1505
  • InChI=1S/2Na.H2O8S2/c;;1-9(2,3)7-8-10(4,5)6/h;;(H,1,2,3)(H,4,5,6)/q2*+1;/p-2 Yes check.svgY
    Key: CHQMHPLRPQMAMX-UHFFFAOYSA-L Yes check.svgY
  • InChI=1/2Na.H2O8S2/c;;1-9(2,3)7-8-10(4,5)6/h;;(H,1,2,3)(H,4,5,6)/q2*+1;/p-2
    Key: CHQMHPLRPQMAMX-NUQVWONBAA
  • [Na+].[Na+].O=S(=O)([O-])OOS([O-])(=O)=O
Properties
Na2S2O8
Molar mass 238.10 g/mol
AppearanceWhite powder
Density 2.601 g/cm3 [1]
Melting point 180 °C (356 °F; 453 K) decomposes
55.6 g/100ml (20 °C)
Hazards
GHS labelling:
GHS-pictogram-rondflam.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Danger
H272, H302, H315, H317, H319, H334, H335, H371
P220, P261, P280, P305+P351+P338, P342+P311
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazard OX: Oxidizer. E.g. potassium perchlorate
2
0
1
OX
Flash point Non-flammable
Safety data sheet (SDS) ICSC 1136
Related compounds
Other anions
Sodium dithionite
Sodium sulfite
Sodium sulfate
Other cations
Potassium persulfate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Sodium persulfate is the inorganic compound with the formula Na 2 S2 O8. It is the sodium salt of peroxydisulfuric acid, H2S2O8, an oxidizing agent. It is a white solid that dissolves in water. It is almost non-hygroscopic and has good shelf-life.

Contents

Production

The salt is prepared by the electrolytic oxidation of sodium bisulfate:

2 NaHSO4 → Na2S2O8 + H2

Oxidation is conducted at a platinum anode. [2] In this way about 165,000 tons were produced in 2005. [3]

The standard redox potential of sodium persulfate into hydrogen sulfate is 2.1 V, which is higher than that of hydrogen peroxide (1.8 V) but lower than ozone (2.2 V). [4] The sulfate radical formed in situ has a standard electrode potential of 2.7 V.

However, there are a few drawbacks in utilizing platinum anodes to produce the salts; the manufacturing process is inefficient due to oxygen evolution and the product could contain contaminants coming from platinum corrosion (mainly due to extremely oxidizing nature of the sulfate radical). Thus, boron-doped diamond electrodes have been proposed as alternatives to the conventional platinum electrodes. [5]

Structure

The sodium and potassium salts adopt very similar structures in the solid state, according to X-ray crystallography. In the sodium salt, the O-O distance is 1.476 Å. The sulfate groups are tetrahedral, with three short S-O distances near 1.44 and one long S-O bond at 1.64 Å. [1]

Applications

It is mainly used as a radical initiator for emulsion polymerization reactions for styrene based polymers such as Acrylonitrile butadiene styrene. [3] Also applicable for accelerated curing of low formaldehyde adhesives.

Other uses

It is a bleach, both standalone (particularly in hair cosmetics) and as a detergent component. It is a replacement for ammonium persulfate in etching mixtures for zinc and printed circuit boards, and is used for pickling of copper and some other metals.

It is also used as a soil conditioner and for soil and groundwater remediation [5] [6] and in manufacture of dyestuffs, modification of starch, bleach activator, desizing agent for oxidative desizing, etc.

Organic chemistry

Sodium persulfate is a specialized oxidizing agent in chemistry, classically in the Elbs persulfate oxidation and the Boyland–Sims oxidation reactions. It is also used in radical reactions; for example in a synthesis of diapocynin from apocynin where iron(II) sulfate is the radical initiator. [7]

DiapocyninSynthesis.svg

Safety

The salt is an oxidizer and forms combustible mixtures with organic materials such as paper.

Related Research Articles

<span class="mw-page-title-main">Electrolysis</span> Technique in chemistry and manufacturing

In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity."

<span class="mw-page-title-main">Redox</span> Chemical reaction in which oxidation states of atoms are changed

Redox is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state. The oxidation and reduction processes occur simultaneously in the chemical reaction.

In chemistry, a reducing agent is a chemical species that "donates" an electron to an electron recipient.

<span class="mw-page-title-main">Hypochlorite</span> Anion

In chemistry, hypochlorite, or chloroxide is an anion with the chemical formula ClO. It combines with a number of cations to form hypochlorite salts. Common examples include sodium hypochlorite and calcium hypochlorite. The Cl-O distance in ClO is 1.69 Å.

<span class="mw-page-title-main">Cadmium sulfate</span> Chemical compound

Cadmium sulfate is the name of a series of related inorganic compounds with the formula CdSO4·xH2O. The most common form is the monohydrate CdSO4·H2O, but two other forms are known CdSO4·83H2O and the anhydrous salt (CdSO4). All salts are colourless and highly soluble in water.

<span class="mw-page-title-main">Sodium thiosulfate</span> Chemical compound

Sodium thiosulfate is an inorganic compound with the formula Na2S2O3·(H2O)x. Typically it is available as the white or colorless pentahydrate, which is a white solid that dissolves well in water. The compound is a reducing agent and a ligand, and these properties underpin its applications.

<span class="mw-page-title-main">Radical anion</span> Free radical species

In organic chemistry, a radical anion is a free radical species that carries a negative charge. Radical anions are encountered in organic chemistry as reduced derivatives of polycyclic aromatic compounds, e.g. sodium naphthenide. An example of a non-carbon radical anion is the superoxide anion, formed by transfer of one electron to an oxygen molecule. Radical anions are typically indicated by .

<span class="mw-page-title-main">Ammonium persulfate</span> Chemical compound

Ammonium persulfate (APS) is the inorganic compound with the formula (NH4)2S2O8. It is a colourless (white) salt that is highly soluble in water, much more so than the related potassium salt. It is a strong oxidizing agent that is used as a catalyst in polymer chemistry, as an etchant, and as a cleaning and bleaching agent.

<span class="mw-page-title-main">Potassium peroxymonosulfate</span> Chemical compound

Potassium peroxymonosulfate is widely used as an oxidizing agent, for example, in pools and spas. It is the potassium salt of peroxymonosulfuric acid. Potassium peroxymonosulfate per se is rarely encountered. It is often confused with the triple salt 2KHSO5·KHSO4·K2SO4, known as Oxone.

A persulfate is a compound containing the anions SO2−
5
or S
2
O2−
8
. The anion SO2−
5
contains one peroxide group per sulfur center, whereas in S
2
O2−
8
, the peroxide group bridges the sulfur atoms. In both cases, sulfur adopts the normal tetrahedral geometry typical for the S(VI) oxidation state. These salts are strong oxidizers.

<span class="mw-page-title-main">Potassium persulfate</span> Chemical compound

Potassium persulfate is the inorganic compound with the formula K2S2O8. Also known as potassium peroxydisulfate, it is a white solid that is sparingly soluble in cold water, but dissolves better in warm water. This salt is a powerful oxidant, commonly used to initiate polymerizations.

<span class="mw-page-title-main">Lithium peroxide</span> Chemical compound

Lithium peroxide is the inorganic compound with the formula Li2O2. Lithium peroxide is a white solid, and unlike most other alkali metal peroxides, it is nonhygroscopic. Because of its high oxygen:mass and oxygen:volume ratios, the solid has been used to remove CO2 from and release O2 to the atmosphere in spacecraft.

<span class="mw-page-title-main">Peroxydisulfuric acid</span> Persulfuric acid

Peroxydisulfuric acid is an inorganic compound with a chemical formula (HO3SO)2. It is also called Marshall's acid after Professor Hugh Marshall, who discovered it in 1891.

<span class="mw-page-title-main">Peroxydisulfate</span> Ion containing sulfur and oxygen with a charge of 2-

The peroxydisulfate ion, S
2
O2−
8
, is an oxyanion, the anion of peroxydisulfuric acid. It is commonly referred to as persulfate, but this term also refers to the peroxomonosulfate ion, SO2−
5
. It is also called peroxodisulfate. Approximately 500,000 tons of salts containing this anion are produced annually. Important salts include sodium persulfate (Na2S2O8), potassium persulfate (K2S2O8), and ammonium persulfate ((NH4)2S2O8). These salts are colourless, water-soluble solids that are strong oxidants.

<span class="mw-page-title-main">Barium ferrate</span> Chemical compound

Barium ferrate is the chemical compound of formula BaFeO4. This is a rare compound containing iron in the +6 oxidation state. The ferrate(VI) ion has two unpaired electrons, making it paramagnetic. It is isostructural with BaSO4, and contains the tetrahedral [FeO4]2− anion.

In situ chemical oxidation (ISCO), a form of advanced oxidation process, is an environmental remediation technique used for soil and/or groundwater remediation to lower the concentrations of targeted environmental contaminants to acceptable levels. ISCO is accomplished by introducing strong chemical oxidizers into the contaminated medium to destroy chemical contaminants in place. It can be used to remediate a variety of organic compounds, including some that are resistant to natural degradation. The in situ in ISCO is just Latin for "in place", signifying that ISCO is a chemical oxidation reaction that occurs at the site of the contamination.

<span class="mw-page-title-main">TEMPO</span> Chemical compound

(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl or (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl, commonly known as TEMPO, is a chemical compound with the formula (CH2)3(CMe2)2NO. This heterocyclic compound is a red-orange, sublimable solid. As a stable aminoxyl radical, it has applications in chemistry and biochemistry. TEMPO is used as a radical marker, as a structural probe for biological systems in conjunction with electron spin resonance spectroscopy, as a reagent in organic synthesis, and as a mediator in controlled radical polymerization.

Sodium cyanate is the inorganic compound with the formula NaOCN. A white solid, it is the sodium salt of the cyanate anion.

Electro-oxidation(EO or EOx), also known as anodic oxidation or electrochemical oxidation (EC), is a technique used for wastewater treatment, mainly for industrial effluents, and is a type of advanced oxidation process (AOP). The most general layout comprises two electrodes, operating as anode and cathode, connected to a power source. When an energy input and sufficient supporting electrolyte are provided to the system, strong oxidizing species are formed, which interact with the contaminants and degrade them. The refractory compounds are thus converted into reaction intermediates and, ultimately, into water and CO2 by complete mineralization.

<span class="mw-page-title-main">Sodium ferrate</span> Chemical compound

Sodium ferrate is a chemical compound with the formula Na2FeO4. It is a sodium salt of ferric acid that is very difficult to obtain. In most iron compounds, the metal has an oxidation state of +2 or +3. Ferric acid, with an oxidation state of +6, is extremely unstable and does not exist under normal conditions. Therefore, its salts, such as sodium ferrate, also tend to be unstable. Due to its high oxidation state, FeO42- is a potent oxidizing agent.

References

  1. 1 2 Allan, David R. (2006). "Sodium peroxodisulfate". Acta Crystallographica Section E. 62 (3): i44 –i46. doi: 10.1107/S1600536806004302 .
  2. Pietzsch, A.; Adolph, G. J. Chem. Technol. Biotechnol. 1911, 30, 85.
  3. 1 2 Harald Jakob, Stefan Leininger, Thomas Lehmann, Sylvia Jacobi, Sven Gutewort. "Peroxo Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a19_177.pub2. ISBN   978-3-527-30673-2.{{cite encyclopedia}}: CS1 maint: multiple names: authors list (link)
  4. Block, Philip A., Richard A. Brown, and David Robinson. "Novel activation technologies for sodium persulfate in-situ chemical oxidation." Proceedings of the Fourth International Conference on the remediation of chlorinated and recalcitrant compounds. 2004.
  5. 1 2 Shafiee, Saiful Arifin; Aarons, Jolyon; Hairul Hisham, Hamzah (2018). "Electroreduction of Peroxodisulfate: A Review of a Complicated Reaction". Journal of the Electrochemical Society. 165 (13): H785 –H798. doi: 10.1149/2.1161811jes . S2CID   106396614.
  6. Wacławek, Stanisław; Lutze, Holger V.; Grübel, Klaudiusz; Padil, Vinod V.T.; Černík, Miroslav; Dionysiou, Dionysios.D. (2017). "Chemistry of persulfates in water and wastewater treatment: A review". Chemical Engineering Journal. 330: 44–62. doi:10.1016/j.cej.2017.07.132.
  7. Luchtefeld, Ron; Dasari, Mina S.; Richards, Kristy M.; Alt, Mikaela L.; Crawford, Clark F. P.; Schleiden, Amanda; Ingram, Jai; Hamidou, Abdel Aziz Amadou; et al. (2008). "Synthesis of Diapocynin". J. Chem. Educ. 85 (3): 411. Bibcode:2008JChEd..85..411D. doi:10.1021/ed085p411.