Sodium diuranate

Last updated
Sodium diuranate
Sodium Diuranate.jpeg
Na2U2O7.png
Identifiers
ECHA InfoCard 100.033.882 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
Properties
Na2U2O7
Density 6.44 g/cm3
Melting point 1,646 °C (2,995 °F; 1,919 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Sodium diuranate, also known as the yellow oxide of uranium, is an inorganic chemical compound with the chemical formula Na2U2O7. It is a sodium salt of a diuranate anion. It forms a hexahydrate Na2U2O7·6H2O. Sodium diuranate is commonly referred to by the initials SDU. [1] Along with ammonium diuranate it was a component in early yellowcakes. [2] The ratio of the two compounds is determined by process conditions; however, yellowcake is now largely a mix of uranium oxides. [3]

Contents

Preparation

In the classical procedure for extracting uranium, pitchblende is broken up and mixed with sulfuric and nitric acids. [4] The uranium dissolves to form uranyl sulfate and sodium carbonate is added to precipitate impurities. If the uranium in the ore is in the tetravalent oxidation state, an oxidiser is added to oxidise it to the hexavalent oxidation state, and sodium hydroxide is then added to make the uranium precipitate as sodium diuranate. [5] The alkaline process of milling uranium ores involves precipitating sodium uranate from the pregnant leaching solution to produce the semi-refined product referred to as yellowcake. [6]

These older methods of extracting uranium from its uraninite ores has been replaced in current practice by such procedures as solvent extraction, ion exchange, and volatility methods. [7]

Sodium uranate may be obtained in the amorphous form by heating together urano-uranic oxide and sodium chlorate; or by heating sodium uranyl acetate or carbonate. The crystalline form is produced by adding the green oxide in small quantities to fused sodium chloride, or by dissolving the amorphous form in fused sodium chloride, and allowing crystallization to take place. It yields reddish-yellow to greenish-yellow prisms or leaflets.

Uses

A uranium glass bowl in the shape of a cat, on top of a fiestaware plate, both previous uses of Sodium diuranate. AW U glass bowl on fiestaware plate.jpg
A uranium glass bowl in the shape of a cat, on top of a fiestaware plate, both previous uses of Sodium diuranate.

In the past it was widely used to produce uranium glass or vaseline glass, [8] the sodium salt dissolving easily into the silica matrix during the firing of the initial melt.

It was also used in porcelain dentures to give them a fluorescence similar to that of natural teeth and once used in pottery to produce ivory to yellow shades in glazes. [9] It was added to these products as a mix with cerium oxide. [10] The final uranium composition was from 0.008 to 0.1% by weight uranium with an average of about 0.02%. The practice appears to have stopped in the late 1980s.

Related Research Articles

The actinide or actinoid series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. The actinide series derives its name from the first element in the series, actinium. The informal chemical symbol An is used in general discussions of actinide chemistry to refer to any actinide.

<span class="mw-page-title-main">Uranium</span> Chemical element, symbol U and atomic number 92

Uranium is a chemical element; it has symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium radioactively decays by emitting an alpha particle. The half-life of this decay varies between 159,200 and 4.5 billion years for different isotopes, making them useful for dating the age of the Earth. The most common isotopes in natural uranium are uranium-238 and uranium-235. Uranium has the highest atomic weight of the primordially occurring elements. Its density is about 70% higher than that of lead and slightly lower than that of gold or tungsten. It occurs naturally in low concentrations of a few parts per million in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite.

<span class="mw-page-title-main">Sodium carbonate</span> Chemical compound

Sodium carbonate is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, odourless, water-soluble salts that yield alkaline solutions in water. Historically, it was extracted from the ashes of plants grown in sodium-rich soils, and because the ashes of these sodium-rich plants were noticeably different from ashes of wood, sodium carbonate became known as "soda ash". It is produced in large quantities from sodium chloride and limestone by the Solvay process, as well as by carbonating sodium hydroxide which is made using the Chlor-alkali process.

<span class="mw-page-title-main">Uranium hexafluoride</span> Chemical compound

Uranium hexafluoride, sometimes called hex, is an inorganic compound with the formula UF6. Uranium hexafluoride is a volatile white solid that reacts with water, releasing corrosive hydrofluoric acid. The compound reacts mildly with aluminium, forming a thin surface layer of AlF3 that resists any further reaction from the compound. UF6 is used in the process of enriching uranium, which produces fuel for nuclear reactors and nuclear weapons.

<span class="mw-page-title-main">Yellowcake</span> Uranium concentrate powder

Yellowcake is a type of uranium concentrate powder obtained from leach solutions, in an intermediate step in the processing of uranium ores. It is a step in the processing of uranium after it has been mined but before fuel fabrication or uranium enrichment. Yellowcake concentrates are prepared by various extraction and refining methods, depending on the types of ores. Typically, yellowcakes are obtained through the milling and chemical processing of uranium ore, forming a coarse powder that has a pungent odor, is insoluble in water, and contains about 80% uranium oxide, which melts at approximately 2880 °C.

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

<span class="mw-page-title-main">Vanadium(V) oxide</span> Precursor to vanadium alloys and industrial catalyst

Vanadium(V) oxide (vanadia) is the inorganic compound with the formula V2O5. Commonly known as vanadium pentoxide, it is a brown/yellow solid, although when freshly precipitated from aqueous solution, its colour is deep orange. Because of its high oxidation state, it is both an amphoteric oxide and an oxidizing agent. From the industrial perspective, it is the most important compound of vanadium, being the principal precursor to alloys of vanadium and is a widely used industrial catalyst.

<span class="mw-page-title-main">Uranyl nitrate</span> Chemical compound

Uranyl nitrate is a water-soluble yellow uranium salt with the formula UO2(NO3)2 · n H2O. The hexa-, tri-, and dihydrates are known. The compound is mainly of interest because it is an intermediate in the preparation of nuclear fuels.

<span class="mw-page-title-main">Uranium trioxide</span> Chemical compound

Uranium trioxide (UO3), also called uranyl oxide, uranium(VI) oxide, and uranic oxide, is the hexavalent oxide of uranium. The solid may be obtained by heating uranyl nitrate to 400 °C. Its most commonly encountered polymorph, γ-UO3, is a yellow-orange powder.

<span class="mw-page-title-main">Uranyl hydroxide</span> Chemical compound

Uranyl hydroxide is a hydroxide of uranium with the chemical formula UO2(OH)2 in the monomeric form and (UO2)2(OH)4 in the dimeric; both forms may exist in normal aqueous media. Uranyl hydroxide hydrate is precipitated as a colloidal yellowcake from oxidized uranium liquors near neutral pH.

Uranyl sulfate describes a family of inorganic compounds with the formula UO2SO4(H2O)n. These salts consist of sulfate, the uranyl ion, and water. They are lemon-yellow solids. Uranyl sulfates are intermediates in some extraction methods used for uranium ores. These compounds can also take the form of an anhydrous salt.

<span class="mw-page-title-main">Ammonium diuranate</span> Chemical compound

Ammonium diuranate or (ADU) ((NH4)2U2O7), is one of the intermediate chemical forms of uranium produced during yellowcake production. The name "yellowcake" originally given to this bright yellow salt, now applies to mixtures of uranium oxides which are actually hardly ever yellow. It also is an intermediate in mixed-oxide (MOX) fuel fabrication. Although it is usually called "ammonium diuranate" as though it has a "diuranate" ion U
2
O2−
7
, this is not necessarily the case. It can also be called diammonium diuranium heptaoxide. The structure is said to be similar to that of uranium dioxide dihydrate.

<span class="mw-page-title-main">Uranate</span>

A uranate is a ternary oxide involving the element uranium in one of the oxidation states 4, 5 or 6. A typical chemical formula is MxUyOz, where M represents a cation. The uranium atom in uranates(VI) has two short collinear U–O bonds and either four or six more next nearest oxygen atoms. The structures are infinite lattice structures with the uranium atoms linked by bridging oxygen atoms.

Magnesium diuranate (MgU2O7) is a compound of uranium. It is known in the uranium refining industry as "MDU" and forms the major part of some yellowcake mixtures. Yellowcakes are an intermediate product in the uranium refining process.

<span class="mw-page-title-main">Ammonium uranyl carbonate</span> Chemical compound

Ammonium uranyl carbonate (UO2CO3·2(NH4)2CO3) is known in the uranium processing industry as AUC and is also called uranyl ammonium carbonate. This compound is important as a component in the conversion process of uranium hexafluoride (UF6) to uranium dioxide (UO2). The ammonium uranyl carbonate is combined with steam and hydrogen at 500–600 °C to yield UO2. In another process aqueous uranyl nitrate, known as uranyl nitrate liquor (UNL) is treated with ammonium bicarbonate to form ammonium uranyl carbonate as a solid precipitate. This is separated from the solution, dried with methanol and then calcinated with hydrogen directly to UO2 to obtain a sinterable grade powder. The ex-AUC uranium dioxide powder is free-flowing, relatively coarse (10 µ) and porous with specific surface area in the range of 5 m2/g and suitable for direct pelletisation, avoiding the granulation step. Conversion to UO2 is often performed as the first stage of nuclear fuel fabrication.

Uranium compounds are compounds formed by the element uranium (U). Although uranium is a radioactive actinide, its compounds are well studied due to its long half-life and its applications. It usually forms in the +4 and +6 oxidation states, although it can also form in other oxidation states.

<span class="mw-page-title-main">In situ leach</span>

In-situ leaching (ISL), also called in-situ recovery (ISR) or solution mining, is a mining process used to recover minerals such as copper and uranium through boreholes drilled into a deposit, in situ. In situ leach works by artificially dissolving minerals occurring naturally in a solid state. For recovery of material occurring naturally in solution, see: Brine mining.

<span class="mw-page-title-main">Uranyl carbonate</span> Chemical compound

Uranyl carbonate refers to the inorganic compound with the formula UO2CO3. Also known by its mineral name rutherfordine, this material consists of uranyl (UO22+) and carbonate (CO32-). Like most uranyl salts, the compound is a polymeric, each uranium(VI) center being bonded to eight O atoms. Hydrolysis products of rutherfordine are also found in both the mineral and organic fractions of coal and its fly ash and is the main component of uranium in mine tailing seepage water.

<span class="mw-page-title-main">Lead compounds</span> Type of compound

Compounds of lead exist with lead in two main oxidation states: +2 and +4. The former is more common. Inorganic lead(IV) compounds are typically strong oxidants or exist only in highly acidic solutions.

References

  1. Meredith, A. D.(2013). Modified Sodium Diuranate Process For the Recovery of Uranium From Uranium Hexafluoride Transport Cylinder Wash solution. (Doctoral dissertation). Retrieved from http://scholarcommons.sc.edu/etd/2466
  2. James A. Kent (27 May 2010). Kent and Riegel's Handbook of Industrial Chemistry and Biotechnology. Springer Science & Business Media. pp. 962–. ISBN   978-0-387-27843-8.
  3. Hausen, D. M. (1998). "Characterizing and classifying uranium yellow cakes: A background". JOM. 50 (12): 45–47. Bibcode:1998JOM....50l..45H. doi:10.1007/s11837-998-0307-5. ISSN   1047-4838. S2CID   97023067.
  4. "MQes Uranium Inc" . Retrieved 2016-06-01.
  5. Purification of sodium diuranate. Retrieved 2020-04-30
  6. Method of precipitation of sodium diuranate. Retrieved 2020-04-30
  7. Gindler, J. E.(1962) The Radiochemistry of Uranium pp 39-235
  8. Landa, E. R.; Disantis, D. J. (1993). "A brief history of radioactive glassware". Radiographics. 13 (3): 697–699. doi:10.1148/radiographics.13.3.8316677. PMID   8316677.
  9. "Uranium Containing Dentures (ca. 1960s, 1970s)" . Retrieved 2016-06-01.
  10. Shcherbakov, Alexander B.; Reukov, Vladimir V.; Yakimansky, Alexander V.; Krasnopeeva, Elena L.; Ivanova, Olga S.; Popov, Anton L.; Ivanov, Vladimir K. (17 March 2021). "CeO2 Nanoparticle-Containing Polymers for Biomedical Applications: A Review". Polymers. 13 (6): 924. doi: 10.3390/polym13060924 . ISSN   2073-4360. PMC   8002506 . PMID   33802821.