Uranium disilicide

Last updated
Uranium disilicide
Identifiers
ChemSpider
ECHA InfoCard 100.031.721 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 234-906-4
PubChem CID
  • InChI=1S/2Si.U
    Key: KEZPQLNBRPWCBH-UHFFFAOYSA-N
Properties
USi2
Molar mass 294.199 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Uranium disilicide is an inorganic chemical compound of uranium in oxidation state +4. It is a silicide of uranium. There has been recent interest in using uranium disilicide as an alternative to uranium dioxide for fuel in nuclear reactors. [1] Advantages are higher percentage of uranium and higher thermal conductivity. A direct replacement of UO2 with U3Si2 should enable a reactor to generate more energy from a set of fuel rods and also provide more "coping time" in the case of a LOCA (Loss of Cooling Accident).

The development of uranium disilicide, uranium nitride, or other high thermal conductivity uranium compound may be critical for the performance of "Accident Tolerant Fuel", a development effort mandated by the US Department of Energy. [2] This is due to zircalloy having a higher thermal conductivity than all replacement materials being developed. In particular, SIC-SiC CMC (link), which has several superior material properties to zircalloy for this application, has about five times lower thermal conductivity (varies due to the manufacturing methods used for the fiber and for the matrix) than zircalloy.(refs on SiC-SiC and zircalloy). The lower thermal conductivity means that a reactor using fuel rods with SiC-SiC CMC cladding and conventional UO2 fuel will have to either: 1) Run at a lower power output to keep the fuel the same temperature, or 2) Run with the same power, with the fuel hotter, which means the reactor has less coping time (time to fix what is wrong before something fails). The alternative, enabled by U3Si2 which has about five times better thermal conductivity than UO2 , is expected to be a fuel rod capable of equal power output, slightly better energy output, and longer coping time.

Related Research Articles

<span class="mw-page-title-main">Nuclear chain reaction</span> When one nuclear reaction causes more

In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of these reactions. The specific nuclear reaction may be the fission of heavy isotopes. A nuclear chain reaction releases several million times more energy per reaction than any chemical reaction.

<span class="mw-page-title-main">Nuclear reactor</span> Device used to initiate and control a nuclear chain reaction

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. As of 2022, the International Atomic Energy Agency reports there are 422 nuclear power reactors and 223 nuclear research reactors in operation around the world.

<span class="mw-page-title-main">Pressurized water reactor</span> Type of nuclear reactor

A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants. In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a steam generator, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated. The steam then drives turbines, which spin an electric generator. In contrast to a boiling water reactor (BWR), pressure in the primary coolant loop prevents the water from boiling within the reactor. All light-water reactors use ordinary water as both coolant and neutron moderator. Most use anywhere from two to four vertically mounted steam generators; VVER reactors use horizontal steam generators.

<span class="mw-page-title-main">Nuclear fuel cycle</span> Process of manufacturing and consuming nuclear fuel

The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.

Mixed oxide fuel, commonly referred to as MOX fuel, is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enriched uranium fuel used in the light-water reactors that predominate nuclear power generation.

<span class="mw-page-title-main">Control rod</span> Device used to regulate the power of a nuclear reactor

Control rods are used in nuclear reactors to control the rate of fission of the nuclear fuel – uranium or plutonium. Their compositions include chemical elements such as boron, cadmium, silver, hafnium, or indium, that are capable of absorbing many neutrons without themselves decaying. These elements have different neutron capture cross sections for neutrons of various energies. Boiling water reactors (BWR), pressurized water reactors (PWR), and heavy-water reactors (HWR) operate with thermal neutrons, while breeder reactors operate with fast neutrons. Each reactor design can use different control rod materials based on the energy spectrum of its neutrons. Control rods have been used in nuclear aircraft engines like Project Pluto as a method of control.

<span class="mw-page-title-main">Nuclear fuel</span> Material fuelling nuclear reactors

Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission.

Plutonium (94Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long before being found in nature, the first isotope synthesized being 238Pu in 1940. Twenty plutonium radioisotopes have been characterized. The most stable are plutonium-244 with a half-life of 80.8 million years, plutonium-242 with a half-life of 373,300 years, and plutonium-239 with a half-life of 24,110 years. All of the remaining radioactive isotopes have half-lives that are less than 7,000 years. This element also has eight meta states; all have half-lives of less than one second.

<span class="mw-page-title-main">Supercritical water reactor</span> Concept nuclear reactor whose water operates at supercritical pressure

The supercritical water reactor (SCWR) is a concept Generation IV reactor, designed as a light water reactor (LWR) that operates at supercritical pressure. The term critical in this context refers to the critical point of water, and should not be confused with the concept of criticality of the nuclear reactor.

<span class="mw-page-title-main">Lead-cooled fast reactor</span> Type of nuclear reactor cooled by molten lead

The lead-cooled fast reactor is a nuclear reactor design that use molten lead or lead-bismuth eutectic coolant. These materials can be used as the primary coolant because they have low neutron absorption and relatively low melting points. Neutrons are slowed less by interaction with these heavy nuclei so these reactors operate with fast neutrons.

<span class="mw-page-title-main">Zirconium hydride</span> Alloy of zirconium and hydrogen

Zirconium hydride describes an alloy made by combining zirconium and hydrogen. Hydrogen acts as a hardening agent, preventing dislocations in the zirconium atom crystal lattice from sliding past one another. Varying the amount of hydrogen and the form of its presence in the zirconium hydride controls qualities such as the hardness, ductility, and tensile strength of the resulting zirconium hydride. Zirconium hydride with increased hydrogen content can be made harder and stronger than zirconium, but such zirconium hydride is also less ductile than zirconium.

<span class="mw-page-title-main">Sodium-cooled fast reactor</span> Type of nuclear reactor cooled by molten sodium

A sodium-cooled fast reactor is a fast neutron reactor cooled by liquid sodium.

<span class="mw-page-title-main">Uranium dioxide</span> Chemical compound

Uranium dioxide or uranium(IV) oxide , also known as urania or uranous oxide, is an oxide of uranium, and is a black, radioactive, crystalline powder that naturally occurs in the mineral uraninite. It is used in nuclear fuel rods in nuclear reactors. A mixture of uranium and plutonium dioxides is used as MOX fuel. Prior to 1960, it was used as yellow and black color in ceramic glazes and glass.

<span class="mw-page-title-main">Neutron temperature</span> The kinetic energy of an unbound neutron

The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term temperature is used, since hot, thermal and cold neutrons are moderated in a medium with a certain temperature. The neutron energy distribution is then adapted to the Maxwell distribution known for thermal motion. Qualitatively, the higher the temperature, the higher the kinetic energy of the free neutrons. The momentum and wavelength of the neutron are related through the de Broglie relation. The long wavelength of slow neutrons allows for the large cross section.

<span class="mw-page-title-main">Spent nuclear fuel</span> Nuclear fuel thats been irradiated in a nuclear reactor

Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor. It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and, depending on its point along the nuclear fuel cycle, it will have different isotopic constituents than when it started.

This page describes how uranium dioxide nuclear fuel behaves during both normal nuclear reactor operation and under reactor accident conditions, such as overheating. Work in this area is often very expensive to conduct, and so has often been performed on a collaborative basis between groups of countries, usually under the aegis of the Organisation for Economic Co-operation and Development's Committee on the Safety of Nuclear Installations (CSNI).

<span class="mw-page-title-main">Nuclear graphite</span> Graphite used as a reflector or moderator within a nuclear reactor

Nuclear graphite is any grade of graphite, usually synthetic graphite, manufactured for use as a moderator or reflector within a nuclear reactor. Graphite is an important material for the construction of both historical and modern nuclear reactors, due to its extreme purity and ability to withstand extremely high temperature.

<span class="mw-page-title-main">Uranium nitrides</span> Chemical compound

Uranium nitrides is any of a family of several ceramic materials: uranium mononitride (UN), uranium sesquinitride (U2N3) and uranium dinitride (UN2). The word nitride refers to the −3 oxidation state of the nitrogen bound to the uranium.

In nuclear power technology, burnup is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured as the fraction of fuel atoms that underwent fission in %FIMA or %FIFA as well as, preferably, the actual energy released per mass of initial fuel in gigawatt-days/metric ton of heavy metal (GWd/tHM), or similar units.

<span class="mw-page-title-main">Corium (nuclear reactor)</span> Material in core during nuclear meltdown

Corium, also called fuel-containing material (FCM) or lava-like fuel-containing material (LFCM), is a material that is created in a nuclear reactor core during a nuclear meltdown accident. Resembling lava in consistency, it consists of a mixture of nuclear fuel, fission products, control rods, structural materials from the affected parts of the reactor, products of their chemical reaction with air, water, steam, and in the event that the reactor vessel is breached, molten concrete from the floor of the reactor room.

References

  1. Triuranium Disilicide Nuclear Fuel Composition For Light Water Reactors US Patent # 8.293,151
  2. Development of Light Water Reactor Fuels with Enhanced Accident Tolerance, U.S. Department of Energy June, 2015 Report to Congress https://nuclearfuel.inl.gov/atf/SiteAssets/SitePages/Home/Roadmap_Development%20of%20LWR%20Fuels%20with%20Enhanced%20Accident%20Tolerance.pdf

Further reading