Uranium(III) bromide

Last updated
Uranium(III) bromide
UCl3 without caption.png
Identifiers
3D model (JSmol)
  • Br[U](Br)Br
Properties
UBr3
Molar mass 477.741
Appearancebrown solid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Uranium(III) bromide is an inorganic compound with the chemical formula UBr3. It is radioactive.

Preparation

Uranium(III) bromide can be obtained by the reaction of uranium metal or uranium(III) hydride and hydrogen bromide, [1] or it can also be prepared by the thermal decomposition of NH4UBr4·1.5CH3CN·6H2O. [2] It is difficult to synthesize due to its rapid oxidation in both water and air. [3]

Related Research Articles

<span class="mw-page-title-main">Americium</span> Chemical element, symbol Am and atomic number 95

Americium is a synthetic chemical element; it has symbol Am and atomic number 95. It is radioactive and a transuranic member of the actinide series in the periodic table, located under the lanthanide element europium and was thus named after the Americas by analogy.

The actinide or actinoid series encompasses the 14 metallic chemical elements with atomic numbers from 89 to 103, actinium through Lawrencium. The actinide series derives its name from the first element in the series, actinium. The informal chemical symbol An is used in general discussions of actinide chemistry to refer to any actinide.

<span class="mw-page-title-main">Berkelium</span> Chemical element, symbol Bk and atomic number 97

Berkelium is a synthetic chemical element; it has symbol Bk and atomic number 97. It is a member of the actinide and transuranium element series. It is named after the city of Berkeley, California, the location of the Lawrence Berkeley National Laboratory where it was discovered in December 1949. Berkelium was the fifth transuranium element discovered after neptunium, plutonium, curium and americium.

<span class="mw-page-title-main">Curium</span> Chemical element, symbol Cm and atomic number 96

Curium is a synthetic chemical element; it has symbol Cm and atomic number 96. This transuranic actinide element was named after eminent scientists Marie and Pierre Curie, both known for their research on radioactivity. Curium was first intentionally made by the team of Glenn T. Seaborg, Ralph A. James, and Albert Ghiorso in 1944, using the cyclotron at Berkeley. They bombarded the newly discovered element plutonium with alpha particles. This was then sent to the Metallurgical Laboratory at University of Chicago where a tiny sample of curium was eventually separated and identified. The discovery was kept secret until after the end of World War II. The news was released to the public in November 1947. Most curium is produced by bombarding uranium or plutonium with neutrons in nuclear reactors – one tonne of spent nuclear fuel contains ~20 grams of curium.

<span class="mw-page-title-main">Einsteinium</span> Chemical element, symbol Es and atomic number 99

Einsteinium is a synthetic chemical element; it has symbol Es and atomic number 99. Einsteinium is a member of the actinide series and it is the seventh transuranium element. It was named in honor of Albert Einstein.

<span class="mw-page-title-main">Mendelevium</span> Chemical element, symbol Md and atomic number 101

Mendelevium is a synthetic chemical element; it has symbol Md and atomic number 101. A metallic radioactive transuranium element in the actinide series, it is the first element by atomic number that currently cannot be produced in macroscopic quantities by neutron bombardment of lighter elements. It is the third-to-last actinide and the ninth transuranic element. It can only be produced in particle accelerators by bombarding lighter elements with charged particles. Seventeen isotopes are known; the most stable is 258Md with half-life 51 days; however, the shorter-lived 256Md is most commonly used in chemistry because it can be produced on a larger scale.

<span class="mw-page-title-main">Protactinium</span> Chemical element, symbol Pa and atomic number 91

Protactinium is a chemical element; it has symbol Pa and atomic number 91. It is a dense, radioactive, silvery-gray actinide metal which readily reacts with oxygen, water vapor and inorganic acids. It forms various chemical compounds in which protactinium is usually present in the oxidation state +5, but it can also assume +4 and even +3 or +2 states. Concentrations of protactinium in the Earth's crust are typically a few parts per trillion, but may reach up to a few parts per million in some uraninite ore deposits. Because of its scarcity, high radioactivity and high toxicity, there are currently no uses for protactinium outside scientific research, and for this purpose, protactinium is mostly extracted from spent nuclear fuel.

<span class="mw-page-title-main">Ytterbium(III) oxide</span> Chemical compound

Ytterbium(III) oxide is the chemical compound with the formula Yb2O3. It is one of the more commonly encountered compounds of ytterbium. It occurs naturally in trace amounts in the mineral gadolinite. It was first isolated from this in 1878 by Jean Charles Galissard de Marignac.

<span class="mw-page-title-main">Terbium(III) bromide</span> Chemical compound

Terbium(III) bromide (TbBr3) is a crystalline chemical compound.

<span class="mw-page-title-main">Organoactinide chemistry</span> Study of chemical compounds containing actinide-carbon bonds

Organoactinide chemistry is the science exploring the properties, structure, and reactivity of organoactinide compounds, which are organometallic compounds containing a carbon to actinide chemical bond.

Uranium hydride, also called uranium trihydride (UH3), is an inorganic compound and a hydride of uranium.

<span class="mw-page-title-main">Berkelium compounds</span> Any chemical compound having at least one berkelium atom

Berkelium forms a number of chemical compounds, where it normally exists in an oxidation state of +3 or +4, and behaves similarly to its lanthanide analogue, terbium. Like all actinides, berkelium easily dissolves in various aqueous inorganic acids, liberating gaseous hydrogen and converting into the trivalent oxidation state. This trivalent state is the most stable, especially in aqueous solutions, but tetravalent berkelium compounds are also known. The existence of divalent berkelium salts is uncertain and has only been reported in mixed lanthanum chloride-strontium chloride melts. Aqueous solutions of Bk3+ ions are green in most acids. The color of the Bk4+ ions is yellow in hydrochloric acid and orange-yellow in sulfuric acid. Berkelium does not react rapidly with oxygen at room temperature, possibly due to the formation of a protective oxide surface layer; however, it reacts with molten metals, hydrogen, halogens, chalcogens and pnictogens to form various binary compounds. Berkelium can also form several organometallic compounds.

<span class="mw-page-title-main">Uranium pentabromide</span> Chemical compound

Uranium pentabromide is an inorganic chemical compound with the formula U2Br10.

<span class="mw-page-title-main">Actinide chemistry</span> Branch of nuclear chemistry

Actinide chemistry is one of the main branches of nuclear chemistry that investigates the processes and molecular systems of the actinides. The actinides derive their name from the group 3 element actinium. The informal chemical symbol An is used in general discussions of actinide chemistry to refer to any actinide. All but one of the actinides are f-block elements, corresponding to the filling of the 5f electron shell; lawrencium, a d-block element, is also generally considered an actinide. In comparison with the lanthanides, also mostly f-block elements, the actinides show much more variable valence. The actinide series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium.

<span class="mw-page-title-main">Thorium compounds</span> Any chemical compound having at least one atom of thorium

Many compounds of thorium are known: this is because thorium and uranium are the most stable and accessible actinides and are the only actinides that can be studied safely and legally in bulk in a normal laboratory. As such, they have the best-known chemistry of the actinides, along with that of plutonium, as the self-heating and radiation from them is not enough to cause radiolysis of chemical bonds as it is for the other actinides. While the later actinides from americium onwards are predominantly trivalent and behave more similarly to the corresponding lanthanides, as one would expect from periodic trends, the early actinides up to plutonium have relativistically destabilised and hence delocalised 5f and 6d electrons that participate in chemistry in a similar way to the early transition metals of group 3 through 8: thus, all their valence electrons can participate in chemical reactions, although this is not common for neptunium and plutonium.

<span class="mw-page-title-main">Jaqueline Kiplinger</span> American inorganic chemist

Jaqueline Kiplinger is an American inorganic chemist who specializes in organometallic actinide chemistry. Over the course of her career, she has done extensive work with fluorocarbons and actinides. She is currently a Fellow of the Materials Synthesis and Integrated Devices group in the Materials Physics and Applications Division of Los Alamos National Laboratory (LANL). Her current research interests are focused on the development of chemistry for the United States’ national defense and energy needs.

Robert Guillaumont is a French chemist and honorary professor at the University of Paris-Saclay in Orsay (1967-1998), Member of the French Academy of Sciences and the French Academy of Technologies

Plutonium(III) bromide is an inorganic salt of bromine and plutonium with the formula PuBr3. This radioactive green solid has few uses, however its crystal structure is often used as a structural archetype in crystallography.

Einsteinium compounds are compounds that contain the element einsteinium (Es). These compounds largely have einsteinium in the +3 oxidation state, or in some cases in the +2 and +4 oxidation states. Although einsteinium is relatively stable, with half-lives ranging from 20 days upwards, these compounds have not been studied in great detail.

Lutetium compounds are compounds formed by the lanthanide metal lutetium (Lu). In these compounds, lutetium generally exhibits the +3 oxidation state, such as LuCl3, Lu2O3 and Lu2(SO4)3. Aqueous solutions of most lutetium salts are colorless and form white crystalline solids upon drying, with the common exception of the iodide. The soluble salts, such as nitrate, sulfate and acetate form hydrates upon crystallization. The oxide, hydroxide, fluoride, carbonate, phosphate and oxalate are insoluble in water.

References

  1. Barnard, Robert; Bullock, Joseph I.; Gellatly, Barry J.; Larkworthy, Leslie F. (1973). "Chemistry of the trivalent actinides. Part III. Some chemical and physical properties of hydrated uranium(III) fluoride and the anhydrous chloride, bromide, and iodide. The stability of uranium(III) in aqueous solution and in organic solvents". Journal of the Chemical Society, Dalton Transactions (6): 604–607. doi:10.1039/dt9730000604. ISSN   0300-9246.
  2. Lichtscheidl, Alejandro; Pagano, Justin; Scott, Brian; Nelson, Andrew; Kiplinger, Jaqueline (2016-01-06). "Expanding the Chemistry of Actinide Metallocene Bromides. Synthesis, Properties and Molecular Structures of the Tetravalent and Trivalent Uranium Bromide Complexes: (C5Me4R)2UBr2, (C5Me4R)2U(O-2,6-iPr2C6H3)(Br), and [K(THF)][(C5Me4R)2UBr2] (R = Me, Et)". Inorganics. 4 (1): 1. doi: 10.3390/inorganics4010001 . ISSN   2304-6740.
  3. Barnard, Robert (1969). The chemistry of tervalent uranium (PhD thesis). University of Surrey. Retrieved 2023-12-21.